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ABSTRACT
Research on challenged or delay/disruption-tolerant networks
has exploded in the past few years with a plethora of algo-
rithms targeted at different versions of the problem. Yet,
there have been few formal studies on the fundamental na-
ture of the routing problem in challenged networks. As a
step toward closing this gap, we introduce a formal frame-
work relating the problem and solution spaces in challenged
networks. We define three fundamental types of challenged
networks and several classes of routing mechanisms. We
then prove a number of results on the power of each class of
routing mechanism in terms of the network types that it can
solve. We show that simple variants of MANET protocols
can solve two but not all three network types. However, ei-
ther complete schedule awareness or maximal replication is
sufficient to solve even the most general type of challenged
network. We extend these results to the bounded-storage
and bounded-bandwidth cases. Finally, we briefly discuss a
number of avenues in which the core formalism may be ex-
tended, including an infinite opportunity model and graph
theoretic extensions.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous

General Terms
Theory, Design

Keywords
Challenged networks, Disruption Tolerant Networks, For-
malism
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1. INTRODUCTION
Recent years have seen the emergence of a new kind of

multi-hop mobile wireless network characterized by severely
challenged connectivity. These Challenged1 Networks are
different from Mobile Ad Hoc Networks (MANET) in that
the network is disconnected as a rule rather than as an excep-
tion. This “turning around” of the connectivity assumption
completely changes the solution landscape, and opens up
exciting new areas of research. Solutions are applicable to
military communications [17], inter-planetary networks [7],
networks in under-developed areas [19, 1], or data exfiltra-
tion [6], to name a few.

Prior work in routing for challenged networks has focused
almost entirely on algorithm development, leaving a need
for a fundamental understanding of the problem to comple-
ment this development. In this paper, we examine the prop-
erties of the problem space (types of network challenges),
and solution space (formal models of routing protocols) and
derive results on the power of each class of routing proto-
cols in solving the problem variants. Specifically, we classify
challenged dynamic networks (DN) into eventually connected
(ECDN), eventually routable (ERDN), and eventually trans-
portable (ETDN), representing increasing levels of connec-
tivity challenge. With regard to the solution space, we use a
formal model of a Routing Mechanism (RM), that includes
a Forwarding specification at each instant. We consider path
requiring, schedule aware, replicating Routing Mechanisms,
with and without storage and bandwidth limitations.

Within this formal framework, we derive several results.
We show that a persistent path requiring RM can solve
ECDNs and ERDNs but not ETDNs. The latter can be
solved either by a schedule aware or maximally replicating
RM. Our results lead to a determination, for each of the
eight of RMs, which subset of the network types that combi-
nation can solve. We establish equivalences between storage
requirements of single copy and replication-based routing
mechanisms, and between storage and bandwidth. Further,
if purging are allowed, we show a relationship between stor-
age and delay diameter. Finally, we briefly discuss some
directions in which our formal model can be extended, in
particular Infinite Opportunity ETDNs, and ETDN graph
theory, along with some conjectures.

Different kinds of formalisms are possible, and probably
needed. Algebraic models, with basis in non-classic algebra
[21], network calculus [3], and ordinary differential equations

1Also referred to by a number of other largely synony-
mous terms – Disruption/Delay Tolerant, Intermittently
Connected, Opportunistic, etc.



[24] are some that exist. The formalism we propose is dif-
ferent, and along the lines of the theory of automata and
formal languages [12]. In this theory, there exists a rich set
of results on the power of each computational model (e.g.
pushdown automata, finite state machines) in terms of the
language it can accept/solve (e.g context-free languages, reg-
ular expressions). These results have resulted in a number of
applications, notably in compiler design [12]. Analogously,
we believe that a similar kind of formalism on the power
of routing mechanisms vis-a-vis the solvable challenged net-
work types could help develop better routing algorithms for
challenged networks.

Many of our results are fairly straightforward, but we be-
lieve that the definitions, notation and results form a foun-
dational framework which can be a starting point for a much
richer and deeper formalism. As the first foray into this kind
of formalism, we have interspersed proofs with intuition, in-
formal discussion, and relations to standardized protocols,
often spelling out details even though they may be obvious
to the astute reader.

The remainder of this paper is organized as follows. In
section 2 we define the network types and a notation for
routing mechanisms. In section 3 we prove results on the
solvability of network problems by routing protocol classes.
In section 4 we focus on ETDNs and derive results for the
bounded storage and bandwidth cases. Directions for future
evolution of the formalism are discussed in section 5.

2. A FORMAL MODEL
In this section, we present some definitions and notation in

order to characterize and classify network types and routing
mechanisms.

We identify three types of challenged networks that differ
in terms of the connectivity challenge they pose. Each is a
different kind of dynamic network, defined below.

Definition 2.1. A dynamic network (DN) is a time-
varying network. A DN at a particular instant of time t is
denoted by G(t) = (V (t), E(t)), where t is a non-negative
integer, and E(t) = { (u, v) : u,v ∈ V (t), and can commu-
nicate at time t }.

The fact the time is discrete and not continuous makes
it easier to argue about network properties, and should not
take away anything from the expressive power as one can
make the interval arbitrarily small. We also use G = (V,E)
to denote the union of the graph/vertices/ edges over time.

The following defines the three types of dynamic networks
that we shall study in this paper.

Definition 2.2. An Eventually Connected Dynamic
Network (ECDN) is a DN G(t) such that there exists one
or more T for which G(T ) is connected.

Thus in an ECDN, at some particular times you get a
connected network. Note that this is different from a previ-
ous usage of “eventually connected” [5], but is truer to the
words.

Definition 2.3. An Eventually Routable Dynamic
Network (ERDN) is a DN G(t) such that for every u, v
∈ V , there exists one or more T vu at which G(T vu ) has a path
from u to v.

Thus, an ERDN may never be connected, but we can rely
on an end-to-end path being available between every pair of
nodes at some point(s) in time.

Definition 2.4. An Eventually Transportable Dy-
namic Network (ETDN) is a DN G(t) such that for ev-
ery s, d ∈ V , there exists one or more sequences of times S
= (t1, t2, t3, ..., tk), where tm ≥ tm−1, such that there is a
path from wi to wi+1, i = 1 . . . k − 1), w1 = s, wk = d.

Thus, an ETDN may never be connected and never have
an end-to-end path at any given instant, but there is a tem-
porally ordered link activation sequence that forms a path
unioned over time, for every pair of nodes.

It is important to note that all of the above definitions,
the connectivity, routability or transportability occurs one
or more times – that is, at least once, not exactly once. Thus,
the definitions and the results below apply equally to net-
works where the property occurs multiple times, including
infinite times. However, for the particular case of infinite
times, one may be able to prove additional results, as we
discuss in section 5.

Examples of ECDN, ERDN and ETDN are illustrated in
Figure 1. Figure 1(left) shows a partitioned network healed
by a passing node. This is an ECDN, because at the point
when the healing takes place, the network is connected. As
another example, consider three battalions A, B and C that
are on the corners of a triangle and mutually disconnected,
as shown in Figure 1(center). A circular UAV trajectory
connects, at ti, (i = 1 to 3), battalions A-C, A-B, and B-
C respectively This is an ERDN since the network is never
connected, but there is an end to end path between any
two nodes at some point in time. Finally, Figure 1(right)
is clearly an ETDN because at no point is there a path
between the nodes, but there exists a sequence of times as
per definition 2.4.

Is there a subsumption order amongst these DNs? The
following theorem confirms our intuition in this regard.

Lemma 2.1. S(ECDN) ⊂ S(ERDN) ⊂ S(ETDN), where
S(D) denotes the set of networks of type D.

Proof. Consider a DN G ∈ S(ECDN). Then, ∃ T such
that G(T ) is connected. In a connected network, every node
pair (x, y) has a path between them. Thus, G(t) is an ERDN
where T vu = T is the same for all pairs (u, v), and therefore
G(t) ∈ S(ERDN).

Similarly, consider a DN G(t) ∈ S(ERDN). Then, ∃ a
time T yx when there is a path from x to y. Clearly, this is
a particular case of definition 2.4 in which S = (T yx ) s = x,
d = y. Therefore, G(t) ∈ S(ETDN).

We now turn our attention away from the “problem” do-
main (networks) to the somewhat more abstract “solution”
domain. The following definition classifies the set of routing
algorithms to enable results about which class has the power
to solve which DN problem.

We denote a Routing Mechanism by <(a1, a2, ... , am)
where ai is an attribute of <. An attribute denotes a certain
choice of operation (e.g single copy) or a constraint on op-
eration (e.g. limited storage) of <. The presence of an ai in
the parenthesis indicates that < has that attribute, and the
presence of ai indicates that < has the complement of that
attribute.
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Figure 1: Partition healing (left) is an example of Eventually Connected Dynamic Network (ECDN), and a UAV

sequentially connecting pairs of battalions (center) is an example of Eventually Routable Dynamic Network (ERDN).

A message ferry (right) is a simple example of an Eventually Transportable Dynamic Network (ETDN).

The attributes we have defined and use are: end-to-end
path required (PR) which means that < requires an end-to-
end path for packet transfer; single copy (SC) which means
that < does not replicate packets (intentionally); and un-
available schedule (US) which means that < does not know
in advance about all changes to links at all nodes in advance.
Similarly, PR, SC and US indicate the opposite, that is, no
end-to-end path required, multi-copy routing allowed, and
schedule availability2, respectively.

Note that an attribute without a “bar” constrains the op-
eration of the routing mechanism more than the same at-
tribute with a“bar”. We shall refer to the attributes without
a “bar” (namely, PR, SC, and US) as constrained attributes
and those with (namely, PR, SC and US) as unconstrained.

Thus, for example, <(PR, SC, US) is a routing mecha-
nism that requires an end-to-end path, and does not repli-
cate intentionally, and does not have knowledge of future
events (e.g. a conventional MANET protocol such as AODV).
Epidemic routing is <(PR, SC, US). Other constraints may
be added as the framework evolves.

The basic unit of information transport is called a bundle,
in deference to standard terminology in this field [8]. For
the purposes of this paper, it is no different from the more
well known packet.

At this point, it helps to have the notion of “solve” solidi-
fied. The following two definitions are crucial in this regard.

Definition 2.5. Given a bundle B, a Forwarding is a
mapping F : (T ×V ) → A where T is a sequence of times, V
is the set of vertices, and A ∈ ( forw(x), forwcp(x), delete,
keep) is a set of actions meaning “forward”, “forward but
retain a copy”, “delete the bundle”, “keep the bundle” respec-
tively.

Definition 2.6. A DN G(t) is said to be solvable by a
routing mechanism <(a1, a2, ... , am) (or equivalently,
<(a1, a2, ... , am) can solve G(t)) if and only if < has
a forwarding such that, every originated bundle B destined
for D is delivered to D.

Note that the above definition does not say that every
routing mechanism with the listed attributes solves the given
network problem, only that there is at least one mechanism
that can solve it. On the other hand, if a network problem
is not solvable by <(a1, a2, ... , am), then it means that
no routing mechanism with the said constraints can solve it.
We note that “solvable” here means delivery, no account is
made of delay.

2This means complete schedule availability for every node
for each and every time. Partial schedule availability will be
regarded as Unavailable Schedule (US).

3. SOLVABILITY
We are now ready for some results. For the duration of

this section, we assume that nodes have infinite storage ca-
pacity and links have infinite data rate. The next section
relaxes these assumptions. We also assume that all net-
works considered have at least two nodes (for cleanness of
exposition and not worrying about boundary conditions).
Unless otherwise specified, results are for a single bundle
that could be sourced anywhere and destined to anywhere
and has infinite expiration time.

We begin by formalizing the intuitive notion of subsump-
tion order among the DNs.

Lemma 3.1. If a routing mechanism < can solve ETDNs,
then it can also solve ERDNs and ECDNs. If a routing
mechanism < can solve ERDNs, then it can also solve ECDNs

Proof. By lemma 2.1 and definition 2.6.

The above lemma helps us to state and prove theorems
only for ETDNs rather than thrice, one for each of ECDN,
ERDN and ETDN. We have another lemma with a similar
purpose, and then we can move on to the less obvious ones.

Lemma 3.2. Consider two routing mechanisms <1({ai})
and <2({bi}) such that either bi is same as ai or ai is a
constrained attribute and bi the corresponding unconstrained
attribute. In other words, ∀i (bi = ai) OR (ai is constrained
AND bi = ai). Then, given a DN G(t)

(a) If G(t) is solvable by <1, then it is solvable by <2

(b) If G(t) is not solvable by <2, then it is not solvable by
<1.

Proof. Suppose that F is a Forwarding using which <1

solves G(t). Clearly, F is also a valid Forwarding for <2 since
<2 does not introduce any new constraints, only reduces
constraints, and therefore <2 can solveG(t). Part (b) follows
from the fact that <2 contains every Forwarding that Re1
does.

We first consider the solvable power of the least capable
RM <(PR,SC,US). Recall that this class contains many
traditional MANET protocols such as AODV and OLSR.
Further, these protocols as specified are “non-persistent”,
that is, they drop a packet if there is no end-to-end path
available to the destination. It is clear that these protocols
cannot solve any of ECDN, ERDN and ETDN3 since none of

3One could introduce, for completeness sake, an Always
Connected Dynamic Network (ACDN) which can be solved
by a MANET protocol, but we omit it to focus on “chal-
lenged” networks.



these network types are guaranteed to present a path upon
packet arrival.

However, a persistent version of <(PR,SC,US) can solve
at least ECDN and ERDN, if we assume instantaneous topol-
ogy/path availability.

Lemma 3.3. ECDN and ERDN are solvable by <(PR,SC,
US).

Proof. First we show that <(PR,SC,US) can solve ERDN.
The proof is by existence, that is, by constructing a specific
Forwarding that solves ERDN. Consider a bundle B orig-
inated at a node s, destined for d. Let T be the time at
which the topology knowledge indicates that there is a path
from s to d, say (u1, u2, ...., um) where s = u1, and d = um.
Consider the Forwarding F :

F (t ≤ T, s) = keep

F (T, d) = keep

F (T, ui) = forw(ui+1)

F (T, v ∈ (V − d− ui) = drop

In other words, F holds the bundle at s till the time T
that the path becomes available and then instantaneously
(because of infinite bandwidth and zero processing assump-
tions) has every node along the path send to the next node
and other nodes drop it, if they get it. Clearly, F preserves
single copy, does not use a schedule, and requires a path. It
is also easy to see that the bundle is at d at T (by defini-
tion 2.3). Thus, ERDN is solvable by <(PR, SC,US). By
lemma 3.1, it also solves ECDN.

We note that the proof can be modified in straightforward
manner to relax the instantaneous topology/path availabil-
ity. Specifically, it is easy to show that we only require that
the topology be available before the path disappears, which
in practice is a realistic assumption.

An interesting practical implication of Lemma 3.3 is that
while MANET protocols cannot as such solve any of the
challenged network types we consider, a simple modification
where the forwarding is patient instead of dropping a packet
can solve at least two of the three types. Many challenged
networks might be ECDN or ERDN and it is probably much
easier to modify a MANET routing protocol than invent
brand new ones.

However, even a persistent version cannot solve ETDNs,
as shown below.

Lemma 3.4. ETDN is not solvable by <(PR,SC,US).

Proof. This follows from the fact that <(PR,SC,US))
requires a path and ETDN need not have a path. To be
more formal, consider a three node network where S is the
source of a bundle, D is the destination and M is a data
mule from S to D. Clearly this is a ETDN by definition 2.4.
Further, there is no time T for which this simple network
has an end to end path, and <(PR,SC,US)) requires such
a path4.

The next result shows that even if you relax the path
requiring condition, you still cannot succeed for ETDNs if
you stick to single copies.

4Note that this is true even if all schedules were known,
because < is unable to do “custody transfer”.

Lemma 3.5. ETDN is not solvable by <(PR,SC,US).

Proof. We again prove by contradiction. Consider the
DN in figure 2, referred to as G1. A train of n mules Mi

comes in contact (has a link) with source S, at times ti
respectively, 1 ≤ i ≤ n. The odd numbered mules also
come in contact with destination D after a finite time, but
the even numbered mules “veer off” and never ever are in
contact with D. Two bundles B1 and B2 are sourced at S.
B1 is sourced between tk−1 and tk, and B2 between tk and
tk+1, 2 ≤ k ≤ (n− 2). Clearly, this is an ETDN since there
exists a sequence of links as per definition 2.4.

D

�
�
�
� �

�
�
�

M1M2oddeven M1odd

S

Figure 2: Mule train illustration for proof

Suppose <(PR,SC,US) solves G1. Then, since < is sin-
gle copy, it must have chosen exactly one mule to have for-
warded the copy to. Without loss of generality, suppose the
Forwarding picks the mth mule after sourcing. Then, B1 will
be forwarded to only mule Mk+m and B2 only to Mk+1+m.
Suppose without loss of generality that k +m is odd, then
clearly Mk+1+m is an even numbered mule and does not
contact D and B2 cannot be delivered. This contradicts the
supposition of solvability of G1.

So what can solve ETDNs? The following lemma shows
that relaxing the single copy constraint to allow arbitrary
replication does the trick. Specifically, we show that a non-
path-requiring, multi-copy (a maximal copy to be specific)
routing mechanism can solve ETDN.

Lemma 3.6. ETDN is solvable by <(PR, SC, US).

Proof. We consider a specific Forwarding FMC (MC for
maximal copy) of <(PR, SC, US), namely, one in which a
node sends a copy of the bundle to every node that it can
at every instant of time, unless it has it already. Formally,
for a bundle B,
F (t, u ∈ V (t)) = forwcp(uk),∀(u, uk) ∈ E(t), B 6∈ uk (1)

Consider a bundle B originated at s = w1 and destined for
d = wm. By definition of ETDNs, there exists a sequence of
nodes (w1, w2, ... , wm) such that at time ti there is a link
between wi and wi+1, that is, wi can send (and by definition
of FMC will send) B to wi+1.

We show by induction that FMC solves ETDN. For the
base case, note that at time t1, s (w1) sends the bundle to
w2 since it gives it to all nodes that it can send to at that
time. For the inductive case, consider the bundle at node
wi, i ≥ 2. The bundle is present at wi at all tk ≥ ti−1. By
definition of ETDN, ∃ ti ≥ ti−1 when wi can send to wi+1,
and since it has the bundle at all times ≥ ti−1, it has the
bundle at ti, and by operation of FMC , the bundle is at
wi+1. Thus, ETDN is solvable by <(PR, SC, US).

The key to the above proof is the fact that a node contin-
ues to hold a copy, and unlike the single copy, is not forced
to pick a node to hand it off to. Clearly, the infinite storage
assumption is crucial here from a practical viewpoint, one
that we shall seek to relax later.



PR SC US What’s solvable Proof

Y Y Y ECDN, ERDN Lemmas 3.3, 3.4
Y Y N ECDN, ERDN Lemmas 3.3, 3.2, 3.4
Y N Y ECDN, ERDN Lemmas 3.3, 3.2, 3.4
Y N N ECDN, ERDN Lemmas 3.3, 3.2, 3.4
N Y Y ECDN, ERDN Lemmas 3.5,3.3, 3.2
N Y N All three Lemmas 3.7, 3.1
N N Y All three Lemmas 3.6, 3.1
N N N All three Lemmas 3.6, 3.2

Table 1: Summary table of which mechanism can
solve which DN

Finally, an ETDN is solvable by a single copy routing
mechanism if it has complete schedule information available
because it can “guess right”.

Lemma 3.7. ETDN is solvable by <(PR, SC, US)

Proof. We consider a specific Forwarding FSA (SA for
Schedule Available) of <(PR, SC, US), namely, one in
which a node sends the bundle to the next hop in an eventu-
ally transportable path. It can compute this path due to its
knowledge of the complete schedule. Formally, for a bundle
B,

F (ti, wi ∈ V (t)) = forw(wi+1) (2)

where ti, wi, wi+1 are such that wi will be in contact with
wi+1 at time ti and wi+1 has a path to the destination of B
in a finite time (note the recursive nature of this statement).
Node wi can determine wi+1 due to the complete topology
awareness assumption coupled with the complete schedule
availability property of <(PR, SC, US).

That F is sufficient to solve ETDN follows from the fact
that, by definition, there exists in an ETDN at least one
sequence of nodes (w1, w2, ... , wm) such that at time ti
there is a link between wi and wi+1, that is, wi can send
B to wi+1. And by definition of FSA, it will forward along
this sequence if it exists.

Thus, to solve ETDNs, you need to use a non-path-requiring
mechanism which is either allowed to replicate bundles or
have full knowledge of future contact times. The intuitive
argument that there needs to be enough “mixing” of nodes
for these results to hold is covered by the definition of ETDN
(see definition 2.4 which indirectly implies this.

We sum up our results with the following theorem.

Theorem 3.1. With reference to Table 1, a routing mech-
anism with attributes as in the first three columns can solve
the dynamic networks as in the fourth column.

Proof. For a given row i in Table 1, the result is a direct
consequence of the combined application of the lemmas in
the last column of row i.

4. STORAGE AND BANDWIDTH LIMITED
ETDNS

We now focus solely on ETDNs. We relax the infinite stor-
age and bandwidth assumptions and introduce a new storage
attribute ST , and a “bandwidth availability” attribute BA
(defined later below).

All references to storage are for network-wide storage, thus
s is the sum of storages in all nodes5. Thus, a routing mecha-
nism that is non-path-requiring, is single-copy, has no sched-
ules, and a network wide storage of x is denoted by <(PR,
SC, US, ST = x).

Since the path requiring condition is not acceptable for
ETDNs even without storage constraints, it is obviously not
going to work when storage constraints are imposed. Thus,
in the below, we assume PR and omit it for brevity.

We need the following key definition to proceed further.

Definition 4.1. Let p(s, d) = w1, w2, ... wk denote a
path in an ETDN G between a source s = w1 and destination
d = wk, such that ∃ a sequence of times S = (t1, t2, t3, ..., tk),
where tm ≥ tm−1, such that (wi, wi+1) ∈ E(ti), i = 1 . . .
k− 1) (by definition 2.4 there exists at least one such path).
Then,

(a) The number of hops in p is the number of nodes in the
path excluding the source, that is, hps(s, d, p) = k− 1.

(b) The delay of p is the total time to go from source to

destination, that is, dly(s, d, p) =
Pk−1
j=0 (tj+1 − tj),

where t0 is the time that bundle was originated.

(c) The hop diameter is the longest shortest-hop path, that
is, ∆h = MAXs,d MINp hps(s, d, p).

(d) The delay diameter is the longest shortest-delay path,
that is, ∆d = MAXs,d MINp dly(s, d, p)

The following shows that lack of future information (sched-
ules) can be compensated for by replication even under the
constrained storage model. Consider any window of m bun-
dles sent from a source is released into the network at a single
point in time T (continuous/flow-type comes in lemma 4.3).

Lemma 4.1. If <(SC, US, ST = ψ) can solve an ETDN

G, then so can <(SC, US, ST = ψ · |V |
∆h+1

).

Proof. Consider one of the m bundles B sourced at s
destined to d. Since <(SC, US, ST = ψ) can solve G, there
must exist a path (w1 = s, w2, ... , wm = d) such that
at time ti there is a path between wi and wi+1. Further,
since by definition this must be true for any arbitrary pair
(s, d), the worst-case path length is lower-bounded by the
hop diameter ∆h (we need to consider the worst case because
it needs to solve any possible situation). Now, since the
bundle needs to occupy storage at each hop plus the end
nodes, and all this is true for each of the m bundles, we
have

ψ ≥ (∆h + 1) · size(B) ·m (3)

By lemma 3.6 a maximal copy replication (refer FMC in

that lemma), can solve an ETDN. Let ψ
′

be the storage re-
quired by FMC . Maximum replication can occupy no more

than ψ
′

= |V | · size(B) · m network-wide storage. Substi-

tuting for size(B) from the above equation, we have ψ
′
≤

|V | · ψ
∆h+1

. Thus, <(SC, US, ST = ψ · |V |
∆h+1

) can solve

G.

5It turns out that without any further assumptions a re-
quirement of s network-wide storage implies a worst-case
requirement of s per node since it may be that the dynam-
ics and traffic origination require all bundles to be at one
node at some point in time.



An interesting observation from the lemma is that the
relative performance of a maximal copy mechanism is better

for sparse graphs (when |V |
∆h

is low) than for dense graphs.

Since challenged networks are expected to be sparse, this is
good news for replication-oriented schemes.

We recognize that our use of network-wide rather than
node-specific storage is not practical since in a DTN it is not
in general possible to do distributed buffer sharing. Nonethe-
less, we offer the lemma with the hope that future work may
extend it to the more challenging node-specific buffers case.

We now turn our attention to bandwidth limited ETDNs.
In particular, we consider the fact that the bandwidth avail-
able to transmit bundles over time is limited, which means
that it takes non-zero time to transmit a bundle. We begin
with the definition that captures the bandwidth and time
factors involved.

Definition 4.2. The required bandwidth-availability
of a routing algorithm < is defined as BA =

P
e∈L<

rete where

L< is the set of links traversed by <, re is the datarate and
te is the total time that link e is available and transmitting
one bundle6.

In the lemma below, we show how the solving power of
a single-copy schedule-aware routing algorithm with lim-
ited storage and unlimited bandwidth-availability (ones dis-
cussed in Section 4) is comparable to that of a multi-copy
schedule-unaware algorithm with limited bandwidth avail-
ability.

Lemma 4.2. If an ETDN G(t) = (V,E(t)) can be solved
by <(SC,US, ST = ψ,BA = ∞), then it can be solved by

<(SC,US, ST = |V |ψ
∆h+1

, BA = |E|ψ
∆h+1

), where |E| is the num-

ber of unique links in G(t), and ∆h is the hop-diameter of
G(t).

Proof. As in Lemma 4.1, for m sourced bundles, the
lower bound on storage in <(SC,US, ST = ψ,BA = ∞) is
given by

ψ ≥ (∆h + 1) · size(B) ·m

Consider an Epidemic algorithm F that forwards a copy
of each bundle over every existing and new link. Since F can
deliver a bundle successfully in an eventually transportable
ETDN by transmitting the bundle over every available link
in G(t) exactly once, the bandwidth-availability of this algo-
rithm is given by |E|·size(B)·m. Substituting for size(B)·m
from above, and noting that F requires storage of at most

|V |·size(B)·m, it follows that <(SC,US, ST = |V |ψ
∆h+1

, BA =
|E|ψ
∆h+1

) can indeed solve G(t).

4.1 Reducing Storage by Purging
We now consider the storage requirements of a multi-copy

mechanism when bundles are constantly sourced over time.
First, if bundles never leave the network (i.e., are never
purged), this would clearly exhaust the storage quickly. We
assume, therefore, that delivered bundles are purged using a

6This metric captures the aggregate amount of link resources
that were consumed for routing a bundle from source to
destination. BA has units of bits. It follows that BA =
|L<| · size(B).

purging mechanism that we consider as part of the routing
mechanism. There are many ways in which purging can be
done in practice (see for example [15]). We use an abstrac-
tion here for simplicity – a purge message is originated at the
destination immediately upon delivery and is maximal-copy
forwarded (epidemically) and occupies zero storage. Fur-
ther, each bundle is of unit size7.

Then, the following puts a bound on the storage needed
to solve an ETDN without schedule availability.

Lemma 4.3. <(SC, US, ST = d 2·∆d
τ
e · |V |) can solve an

ETDN with delay diameter ∆d sourcing at most one bundle
every τ seconds.

Proof. Consider the Forwardings below, the first for a
given bundle B and the second for a purge P (B) of bundle
B. The bundle is generated at source s and the purge is
generated at destination d at the exact moment B reaches
d.

FB(t, u ∈ V (t)) = forwcp(uk), B 6∈ uk, t ≥ Ts(B)

FP (B)(t, u ∈ V (t)) = forwcp(uk), P (B) 6∈ uk, t ≥ Td(B)

where Ts(B) and Td(B) are the generation and delivery
times, respectively, of a bundle/purge.

Since each bundle B can take no more than the delay
diameter ∆d time to be delivered, and each correspond-
ing purge P (B) can take no more than ∆d to reach the
nodes that contain B, the window of existence of B is upper
bounded by 2·∆d. Within this time, at most d 2·∆d

τ
e bun-

dles can be generated. Each bundle can be replicated at
most |V | times, and therefore the total storage is bounded

by d 2·∆d
τ
e · |V |.

This lemma may be applicable in practice to decide on the
network-wide storage requirements if the delay diameter is
known.

5. OTHER DIRECTIONS
We briefly discuss two directions in which the formalism of

the previous sections can be “branched out”, focusing more
on possible foundational definitions and open conjectures
than results. The first direction is a special case of the
ETDN definition where infinite opportunities for transport
exist. The second is the extension of graph theory to ETDNs
with new definitions for concepts like “degree”.

5.1 IO-ETDNs
We can extend our formalism to infinite opportunities to

model networks in which there are unlimited number of op-
portunities to communicate over space and time even though
a contemporaneous end-to-end path may not exist. This
opens up the question of whether a single-copy strategy
such as random walk might work (we showed earlier that
a random walk strategy does not work if opportunities are
limited).

We define a transport opportunity as a potential forward-
ing path from a source to a destination that is formed over
space and time.

Definition 5.1. A s-d Transport Opportunity in a
DN G(t) for a given s, d ∈ V , is a sequence of times S =

7It is easy to see that we still capture the essence of the
relationship



(t1, t2, t3, ..., tk), where tm ≥ tm−1, such that (wi, wi+1) ∈
E(ti), i = 1 . . . k − 1), w1 = s, wk = d.

Recall the definition of an Eventually Transportable Dy-
namic Network (ETDN) from Section 2. By definition a
ETDN has at least a single s-d Transport Opportunity for
every pair of nodes (s, d) in it. In this section, we will de-
fine a special case of ETDN. Unless otherwise specified, we
assume that a ETDN has a finite number of nodes.

Definition 5.2. An Infinite Opportunities ETDN or
IO-ETDN is an ETDN G(t) such that for every s, d ∈ V ,
∃ an infinite number of s-d Transport Opportunities.

It is a well-known result that a random walk on finite
static connected graphs is guaranteed to eventually visit ev-
ery node. We prove below that this is not necessarily true
for IO-ETDNs.

Lemma 5.1. A pure random walk does not solve IO-ETDNs.

Proof. Consider a four node chain (shown below) in
which the middle link is alternatively on for a second and
off for a second. The other two links are permanently on.

s-------x1-.-.-.-x2------d

Let us suppose it takes unit time for a bundle to traverse
a link. Suppose a bundle from s destined for d is originated
at t = 0. Using random walk, the bundle will arrive at x1 at
t = 1 and find the link to x2 down. The bundle will therefore
go back to s, and this cycle will repeat. The bundle never
crosses over to x2.

What if the random walk also used a random wait to es-
cape the livelock? This is an open question, but we conjec-
ture that it can still not guarantee to visit every node.

Conjecture 5.1. A random walk with random wait at
each node visited is not guaranteed to eventually visit every
node in an IO-ETDN with probability 1.

One way to prove this conjecture might be to construct
an IO-ETDN that (even though it has a finite number of
nodes) exhibits the same properties as an infinite lattice of
three dimensions or more.

Finally, can any single copy algorithm (not restricted to
random walk) solve IO-ETDNs? We do not know, but think
not.

Conjecture 5.2. An IO-ETDN is not solvable by <(PR,
SC, US).

Disproving Conjecture 5.1 is one way to disprove Conjec-
ture 5.2.

There is a rich set of such open problems in IO-ETDNs.

5.2 ETDN Graph Theory
Just as in graph theory, one can build a number of interest-

ing results on the various properties/constraints of DNs, es-
pecially ETDNs. Since it is the ETDNs that are not ERDNs
that are most interesting from a DTN viewpoint, we first de-
fine the notion of “pure ETDNs” before giving a couple of
such graph theory type results.

Definition 5.3. A Pure ETDN (P-ETDN) is an ETDN
that is not an ERDN (and so by Lemma 2.1) not a ECDN.
Formally, S(P-ETDN) = S(ETDN) − S(ERDN).

Lemma 5.2. Every P-ETDN is a multi-hop network, that
is one in which ∃ at least one source-destination pair (s, d)
such that a bundle from s to d has to go through at least one
other node.

Proof. Consider a P-ETDN G(t). Suppose to the con-
trary that the above theorem is false. Then, for every s,
d, there exists a time, say T ds when s communicate with d.
That is, at time T ds , there exists a path between s and d (for
every s and d). But then this implies, by definition 2.3 that
G(t) is an ERDN which contradicts the pre-condition that
G(t) is a P-ETDN since by definition 5.3, P-ETDN cannot
be an ERDN.

The notion of the degree of a node needs to be redefined
in the ETDN context.

Definition 5.4. The instantaneous number of new con-
tacts of a node m (denoted by conm) is the number of hith-
erto unseen neighbors that are now a neighbor. That is,
conm(ti) = Nbrsm(ti) −

S
j Nbrsm(tj)), j = 1 . . . i − 1.

The eventual maximum total contacts of a DN G(t) (de-
noted by ν(G)) is MAXm(Sumi(conm(ti))).

This poses interesting solvability questions, for example:

Conjecture 5.3. An ETDN with eventual maximum to-
tal contacts of at most two is solvable by <(PR, SC, US)

Other restrictions of ETDNs such as planarity, regular-
ity [10] open up other interesting solvability questions. In
general, rethinking the well known graph properties and al-
gorithms in the ETDN context is an exciting direction.

6. RELATED WORK
There has been a surge in research on DTNs in the last

few years, but nearly all of it has been focused on develop-
ing new routing strategies. These range from replication-
oriented strategies such as Epidemic Routing [23], proba-
bilistic forwarding and purging [11, 22, 13], and future con-
tact prediction approaches [16, 4]. The use of network topol-
ogy knowledge to increase the efficiency of routing has been
studied in [14] and from a more practical viewpoint in [15].
A good survey of routing algorithms in DTNs is available
in [25].

Theoretical models for networks in general have been de-
veloped, although along lines very different from this paper.
In [21], a non-classic algebraic framework is used to formally
investigate the convergence properties of routing protocols.
A network calculus using a time-varying version of the (min,
+) algebra is given in [3]. In [24] a unified framework based
on Ordinary Differential Equations (ODEs) is used to study
epidemic routing and its variations. The accommodation of
time in the computation of shortest paths and other graph-
theoretic problems has been studied as“evolving graphs”[9],
and in terms of a space-time routing framework in [18], but
neither addresses the solution space. More recently, [2] an-
alyzes the performance of a deterministic online DTN rout-
ing algorithm with respect to knowledge (or lack thereof) of
workload and schedule.



In relation to the above, our work is unique in at least
two ways. First, we take a novel first-principles look at
the problem and solution spaces, rather than propose a new
algorithm. Second, unlike other theoretical models which
are algebraic in nature ([24, 3, 21]), we focus on connectivity
as the main discriminator and study the solvability (packet
delivery) by various classes of algorithms. Our work is more
in the style and spirit of the theory of automata and formal
languages[12] and complements algebraic approaches.

7. CONCLUDING REMARKS
Disruption Tolerant Networking is rapidly gaining recog-

nition as an important research area in mobile wireless net-
works. The field needs both principles and practical proto-
cols as it evolves. This paper has taken a first step toward
a formalism to help with the need for principles.

We have presented a formal framework for challenged net-
works and derived some preliminary results that can be
built upon by other researchers. Classifying networks into
whether they are eventually connected, routable or trans-
portable, we have shown a hierarchy of solvability by rout-
ing mechanisms. In particular, we have studied three con-
straints on solutions, namely path requiring, schedule un-
availability, and single copy, and enumerated the networks
that are solvable under each of the eight combinations (Ta-
ble 1). We then considered storage and bandwidth limi-
tations and derived additional solvability results. We have
also discussed directions in which the core formalism can be
extended.

There is obviously significant scope for future work. First,
the notational framework, in particular the use of“attributes”
to characterize a routing protocol needs refinement for a
cleaner exposition as we go forward. More network types
and routing mechanisms could be added to the formalism
along with associated solvability results. Results in section 4
need to be extended to node-specific storage for multiple si-
multaneous flows and incoroporate packet offered load into
the results. As discussed in section 5 the formalism can be
extended to IO-ETDNs, ETDN graph theory, etc. includ-
ing possibly proving the conjectures mentioned. Finally, the
development of efficient routing protocols motivated by the
insights developed from the formalism is another direction
to pursue. For example, such insights have already been in-
strumental in the design of a simple algorithm, described in
[20] that hinges around storage efficient replication. Future
development of the formalism are bounded to yield further
useful insights.
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