GPRS General Packet Radio Service

Packet Radio Technology and Applications

Hannu H. Kari

Director

TSE-Institute

(Telecommunications and Software Engineering)

Helsinki University of Technology

Hannu.Kari@hut.fi

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 1

Table of content

- 1. Why me?
- 2. GPRS history
- 3. We are not alone!
- 4. Requirements
- 5. Business model
- 6. Constraints
- 7. Architecture
- 8. Future

1. Why me?

- Hannu H. Kari
 - 1994-1997 in NTC (System architect, GPRS standardization delegate in ETSI)
 - Member of GPRS expert group
 - Member of GPRS standardization groups
 - SMG1 WPD, SMG1 GPRS AdHoc, SMG 2 GPRS AdHoc, SMG3, SMG3 WPA, SMG3 WPB, SMG3 WPC, SMG3 SA, SMG 3 GPRS AdHoc, SMG4, SMG4 GPRS AdHoc, SMG6, SMG6 GPRS AdHoc, SMG10, SMG10 WPA, SMG10 GPRS AdHoc (SMG= Special Mobile Group, ETSI's GSM standardization subgroup)
 - See also, www.cs.hut.fi/~hhk/GPRS/gprs_own.html

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 3

2. GPRS history

- 2.1 GSM data services
- 2.2 Internet over GSM
- 2.3 GSM data evolution

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute

Page 4

2.1 GPRS history: GSM data services

- GSM provides four types of services
 - Voice service
 - SMS service
 - Store and forward messaging
 - Fax service
 - Data service
 - Transparent data (no error correction, constant delay)
 - Non-transparent data (with error correction, variable delay)
 - Max 9600 bps
 - Access to modems in PSTN

GPRS: 7.10.1998

Hannu H. Kari/HUT/TSE-Institute

Page 5

2.2 GPRS history: Internet over GSM

- Conventional GSM does not provide direct connection to Internet
 - No GSM standard for it!
- Access to Internet requires a call to ISP
- Some proprietary direct Internet access approaches are available
 - In principle similar approach as in any ISP but modems are excluded

2.2 GPRS history: Internet over GSM

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 7

2.3 GPRS history: GSM data evolution

- GSM data limitations
 - Uplink and downlink channels allocated for a user for entire call period
 - User pays based on connection time, not based on volume
 - Bad connections makes more money to operator
 - Connection setup takes 20...25 seconds
 - Limited capacity (9.6 kbps)
 - GSM is designed for speech not data
 - Typically 50% of the radio capacity is wasted
 - Not optimal channel coding for data

2.3 GPRS history: GSM data evolution

- ISDN connection
 - Faster setup time
- V42.bis compression
 - "4-to-1 compression ratio" for text but not ciphered data
- Enhanced coding for data
 - Instead of strong error correction send more data (14.4 kbps)
- High speed circuit switched data (HSCSD)
 - Nx9.6 kbps or Nx14.4 kbps
- Enhance channel coding in GSM radio
 - More advanced modulation techniques over the radio

GPRS: 7.10.1998

Hannu H. Kari/HUT/TSE-Institute

Page 9

3. We are not alone!

- Aloha
 - Early 1970s in Hawaii
- Amateur packet radio
 - AX.25 and NET/ROM
 - http://users.eifelnet.de/wolff/ax25.htm
- CDPD
 - Commercial service in US, max data rate 19,2 kbps
 - http://www.bctm.com/wireless/cdpd.htm
- DECT data
 - Up to 500 kbps
 - http://www.symbionics.co.uk/services/technology/DECT/DECT.htm

3. We are not alone!

- IEEE 802.11
 - Wireless LAN standard, 2+ Mbps transfer rate
 - http://www.wlana.com/index.html
- HiperLAN
 - http://www.netplan.dk/netplan/wireless.htm
- Satellite systems
 - E.g. Iridium: 2.4 kbps
 - http://www.apspg.com/whatsnew/iridium/fast.html
- Bluetooth
 - Nokia, Ericsson, Intel, 3Com, ...
- Others: TETRA, Mobitex, IrDA, RAM, ...

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 11

4. Requirements

- 4.1 Operator requirements
- 4.2 User requirements
- 4.3 Manufacturer requirements

4.1 Requirements: Operator requirements

- Better utilization of the scarce radio resources
- Simplify the access to data networks
- Get more users
- Divide users to profiles/categories
- Support new government requirements
- => Make more money

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 13

4.2 Requirements: User requirements

- Lower cost to access data networks (Internet)
- Higher transfer rate
- Short access delay (support for bursty traffic)
- Shorter connection setup time
- Keep the connection open all the time
- Better support for roaming users
- Flexibility and support of access to various data networks
 - Public Internet access, Corporate access, anonymous access

=> Get more for less

4.3 Requirements: Manufacturer requirements

- Get into the Internet business
 - Get the share of Internet market
- Sell more
 - Networks
 - Mobiles
 - Services
- => Make more money

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 15

5. Business model

- 5.1 Cost of the new system
- 5.2 Selling arguments
- 5.3 Sample operator business model

5.1 Business model: Cost of the new system

- How much GPRS would cost?
 - A LOT!
 - Existing GSM network elements must be updated
 - In principle, all network elements are impacted
 - MSC, VLR, HLR, BSC, BTS, O&M, ...
 - "Don't disturb the money milking cow!"
 - New network elements
 - SGSN, GGSN, IP-routers, firewalls, name servers, ...
 - Internet way of thinking is new to many GSM operators

GPRS: 7.10.1998

Hannu H. Kari/HUT/TSE-Institute

Page 17

5.2 Business model: Selling arguments

- Higher capacity Internet access
 - Up to 171,2 kbps transfer rate (in theory), 40 kbps in practice
- Quicker access to Internet
 - No set up time, Internet access all the time available
- Lower cost
 - Flat rate or volume based billing
 - No charge for the idle time of the "connection"
- OR NO COST!
 - Via anonymous access (somebody else pays the bill)

5.3 Business model: Sample operator business model

• Example business model

		QoS	Monthly fee	Cost/kB	Volume/day	Monthly cost/subs.	Total annual cost	Total data volume	
	# subscribers	level	[FIM]	[FIM]	[kB]	[FIM]	[MFIM]	[GB]	
Business users	100000	High	50	0,02	1000	650	780	36500	
"Normal" users	1000000	Normal	25	0,01	20	31	372	7300	
Web surfers	1000000	Best effort	50	0	250	50	600	91250	<= Off-peak
Computers	100000	High	50	0,1	20	110	132	730	<= Off-peak
Total	2200000						1884	135780	GB/a

• 1 USD = 5.4 FIM, 1 GBP = 8.8 FIM, 1 DEM = 3 FIM, 1 ECU = 6 FIM

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 19

5.3 Business model: Sample operator business model

Volume calculations

Average data volume	Per day	372	GB/d		
	Per hour	15,5	GB/h		
	Per sec	4,3	MB/s		
	Per sec	34,4	Mbps		
Peak hour data volume	Per year	43800	GB/a		
	Per day	120	GB/d		
	Per hour	30	GB/h	All data in 4 busy hours	
	Per sec	8,3	MB/s		
	Per sec	66,7	Mbps		
Number of time slots needed		6667	TSs	Average 10	kbps/TS
	Carriers	833	Carriers		

6. Constraints

- 6.1 Mental limitations
- 6.2 Technical limitations

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 21

6.1 Constraints: Mental limitations

- What is IP? Is it Intelligent Peripherals, part of Intelligent Network's subsystems?
- This is a telecommunication standard, not Internet standard. We must specify everything!
- Let's spend first 4 years to write the standard, then two years for implementations and then see does it work

Page 22

6.2 Constraints: Technical limitations

- GSM is designed for speech service
 - 1.3 calls per user in a busy hour
 - Circuit based communication
 - Continuous flow of data, not packets
 - All mobile terminating calls go to HLR
 - Radio designed for circuits
 - Channel allocation, channel coding, paging mechanism, power control, timing advance, ...
- => GPRS is a 3rd generation service in 2nd generation network

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 23

7. Architecture

- 7.1 Outsider's view to GPRS
- 7.2 Services
- 7.3 Network elements
- 7.4 Mobility management
- 7.5 Session management
- 7.6 Security
- 7.7 Data transfer
- 7.8 Interaction with conventional GSM

7.1 Architecture: Outsider's view to GPRS

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 25

7.2 Architecture: Services

- Packet based access to data networks
 - Internet (IPv4/IPv6)
 - X.25
 - Non-anonymous/Anonymous access
 - Private/public networks
- Fast carrier of SMSs
- User QoS categorization
 - Priorities, mean/peak throughput, delay definition, transmission reliability
- Security (operator/user/identity/data protection)
- Mobility management

7.3 Architecture: Network elements

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 27

7.4 Architecture: Mobility management

- Functions
 - To inform the mobile's location to the GPRS network
 - Attach/Detach
 - Subscription of the normal users is stored in HLR and copied to visited operator during the attach
 - When the mobile is attached to the GPRS service, its location is tracked by the network
 - Routing area updates (similar to GSM Location Area updates)
 - Combined updates for GPRS and conventional GSM services

7.5 Architecture: Session management

- Functions
 - User may have several subscribed contexts (an access to external data network)
 - Any of the contexts can be activated or deactivated independently
 - When a context is activated, user can send and receive data packets
 - MS->fixed network, fixed network->MS, MS->MS
 - When a context is not activated, the network typically "drops" the packets

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 29

7.6 Architecture: Security

- Users are identified and authenticated
- User identities are protected with temporary identities
- Data transmission is encrypted over the radio
 - To protect user data
 - To identify owners of the packets in the radio
 - But "The Big Brother is watching you"
- Protect against hackers, intruders, eaves dropping, ...

7.7 Architecture: Data transfer MS-fixed

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 31

7.7 Architecture: Data transfer MS-MS

7.8 Architecture: Interaction with conventional GSM

- Support of voice calls
 - Paging of mobile terminating calls
- Delivery of short messages (SMSs)
- Supplementary services
- One combined bill to the user for GPRS and conventional GSM services

GPRS: 7.10.1998

Hannu H. Kari/HUT/TSE-Institute

Page 33

Page 34

8. Future

- 8.1 Future of GPRS
- 8.2 Competitors
- 8.3 Links with other mobility management approaches

8.1 Future: Future of GPRS

- Evolution in the future
 - Easy to add new user protocols
 - Support of UMTS?
 - Guaranteed QoS for a mobile user in GPRS?
 - When GPRS offers for example:
 - 32 kbps mean bit rate, 32 kbps peak bit rate, and reasonable transmission delay for 95% of the packets
 - We can offer speech service over GPRS
 - Similar requirements are needed for multimedia for 2 Mbps!

GPRS: 7.10.1998 Hannu H. Kari/HUT/TSE-Institute Page 35

8.2 Future: Competitors

- Need for low cost wireless access for mobile multimedia
 - How much a user would be willing to pay for 5 minutes of multimedia video show?
 - I.e., user transfers 30 Mbits ...4.8 Gbits over the radio
 - 0.05...0.10 FIM maybe, including the content
 - In GSM, it would cost 100 ... 8000 FIM!
 - So, if the radio access for wireless multimedia costs very little, how much it would cost to transfer speech over radio?
 - In practice: Nothing!
- Wireless Internet access alternatives
 - WLAN, HiperLAN, IrDA, ...

8.3 Future: Links with other mobility management approaches

- Macro/Micro/Nano-mobility
 - Macro-mobility
 - Between organizations
 - Mobile IP, VPN, ...
 - Micro-mobility
 - Within an organization
 - GPRS, IP-IP tunneling
 - Nano-mobility
 - Within a subnetwork
 - Adhoc radio networks using protocol such as Manet