Pricing - part 1

S-38.041 Networking Business

Basic concepts

Competition

- Who sets the price? Basic cases:
- Pure monopolist sets the price to maximize his supplier surplus (i.e. profit)
- Regulator sets the price to maximize social surplus (regulated monopoly)
- Pure competition sets the price to maximize consumer surplus (all players are price takers)
- Oligopoly allows the choice of price and quantity which triggers pricing games, and strategies!
- Tatonnement, the iterative process where the market equilibrium is achieved via price changes (assuming static utility and cost functions), suffers from
- Utility and cost functions evolving too fast in innovative markets
- Some forms of utility functions defying convergence
- Untruthful declarations (i.e. lying can be beneficial)
- Finite capacity constraints causing delay

Price, tariff, and charges

- Customers pay charges computed from tariffs
- Price is a charge associated with one unit of usage
- Telecom tariffs are typically non-linear and two-part
- Two-part tariffs are of the form $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x}$
$-a$ is fixed charge (e.g. monthly GPRS access charge)
$-x$ is quantity (e.g. number of GPRS megabytes per month)
$-b$ is unit price (e.g. price per GPRS megabyte)
- Two-part tariff reflects the operator's cost structure, i.e. fixed vs. variable costs
- How to set optimal tariffs?
- High fixed charge discourages small customers
- High unit price discourages large customers

Pure monopoly

Basics

- Monopoly is a situation where a single supplier controls the quantity of production, and thus also the price
- Monopoly is likely when the market involves
- positive network externality (the average utility per customer increases with larger customer base)
- economy of scale (the average cost of production decreases with the quantity of good produced)
- economy of scope (the average cost of production decreases with the number of different goods produced)
- Mathematically, costs are said to be subadditive if $c(x+y) \leq c(x)+c(y)$, when all suppliers share the same cost function $c(\cdot)$

Pure monopoly

Profit maximization

- Monopolist's problem: maximize ${ }_{\mathrm{p}}\left[\sum_{\mathrm{j}} p_{\mathrm{j}} x_{\mathrm{j}}(p)-c(x)\right]$
- Profit is maximized when marginal revenue equals marginal cost
- Welfare would be maximized if price is set to marginal cost
- Regulator would like to enforce marginal cost pricing

Pure monopoly

Price discrimination

- First degree price discrimination (i.e. personalized pricing)
- Operator maximizes profit per customer, $p_{i}=u_{i}$
- Also called perfect price discrimination
- All customer surplus turns into operator surplus
- Second degree (i.e. versioning, quantity discrimination)
- Operator posts a set of volume-based prices
- Customer self-selects to maximize surplus
- Optimal volume pricing holds the following properties
- The highest demand customer chooses the version of lowest price per unit
- Monopolist takes all surplus of lowest demand customers
- The higher demand customers receive an informational rent
- Third degree (i.e. market segmentation, group pricing)
- Grouping based on pre-selection, e.g. student id card
- Different price elasticities, $\varepsilon_{i}=\left(\Delta x / x_{i}\right) /\left(\Delta p / p_{i}\right)$, enable different prices

Pure monopoly

 Service bundling and differentiation- Bundling involves a service package not priced as a sum of the prices of individual services
- Bundling sometimes enables perfect price discrimination
- Bundling reduces dispersion in willingness to pay and thus enables greater revenue
- Operator can segment the market via service differentiation
- Versions of service must not substitute each other (e.g. QoS)
- Operator must prevent harmful reselling (cmp. wholesale vs. retail)
- Operator may not be able to price discriminate based on content
- Operator not allowed to read user-created content
- Technology-based differentiation difficult (e.g. IP vs. SMS)
- Operator's charging can be by-passed (e.g. credit cards)

Perfect competition

- Regulator cannot be satisfied even on a welfare maximizing monopoly since innovation requires competition
- Under perfect competition
- operators participate if, $p y^{*} \geq F+c_{v}\left(y^{*}\right)$, where y^{*} is the optimal service volume and F is fixed cost
- market clearance, i.e. demand = supply, maximizes social surplus
- operators experience zero economic profit in the long-run (business profit can be positive)
- Perfect competition may not be achieved due to
- non-identical service offerings
- limited visibility to prices of other players
- high switching cost paid by customers for changing operators
- An example of high switching cost is the change of a phone number, which the regulator often solves via number portability

Oligopoly

- Oligopoly is typical in telecommunications: a partly competitive and partly regulated market with a small number of operators
- Operator oligopoly can be seen as a game-theoretic set-up between operators, customers, and the regulator
- Game concepts: zero-sum game, Nash equilibrium, public goods, free rider problem, cartel, one-shot vs. repeated games
- Game models for a small number of operators
- Cournot (quantities posted, prices adjust, all sold)
- Bertrand (prices posted, quantities adjusted by customers)
- Stackelberg (for duopoly, either price or quantity leadership)

Cost-based pricing Motivation

- Marginal cost pricing maximizes consumer surplus but causes problems to operators
- Exclusion of fixed costs
- Prices difficult to compute
- Prices can be close to zero or infinity
- Operator's cost recovery can be supported by weighting the social surplus function in favor of operators (Ramsay pricing)
- Two-part tariffs support the two aspects of cost recovery: fixed vs. variable costs, short vs. long-term
- Burden of fixed costs can also be reduced by cutting capacity via peakload pricing
- Traffic load is moved from busy hour to other time periods
- Traffic loss vs. capacity savings?

Cost-based pricing
 "Fair" prices

- Cost-based pricing assumes that costs are shared in a "fair" way among customers
- sustainable prices reflect actual costs and discourage inefficient 'hit-andrun' competition
- subsidy-free prices reduce churn of subsidizing customers
- Conditions for subsidy-free pricing are
- charge made to any subset T of customers N is no more than the standalone cost of providing services to those customers

$$
\sum_{j \in T} c_{j} \leq c(T), \text { for all } T \subseteq N
$$

- charge made to any subset of customers is at least the incremental cost of providing services to those customers

$$
\sum_{j \in T} c_{j} \leq c(N)-c(N \backslash T), \text { for all } T \subseteq N
$$

- assuming a set of n customers $N=\{1,2 \ldots, n\}$, subadditive cost function, charges c_{j}, cost recovery $\sum_{j \in N} c_{j}=c(N)$

Cost-based pricing Implemention issues

- Problem of knowing the real costs per service
- Future is less known than history (plus accounting delays)
- Cost structures keep changing because of technology evolution
- Common costs dominate
- Solutions for allocating costs to services
- Top-down approaches (based on historic costs)
- Fully Distributed Costs, FDC (flat, coefficients, ad hoc?)
- Activity-Based Costing (e.g. hierarchical process)
- Bottom-up approaches (based on current costs)
- Efficient Component Pricing Rule, ECPR
- Long-Run Incremental Cost, LRIC(+)
- LRIC+ is complex, but favored by regulators because of subsidy-free prices, legacy-free costs, and the right competitive signals to the market (fairness toward incumbents?)

Flat-rate pricing

- Price is set a priori, but the real cost can only be known a posteriori, e.g. broadband Internet access
- Pros
- Simple and cheap to implement for operators
- Predictable to customers
- Cons
- High social cost because of waste of resources (obs. cost savings!)
- Unfair because of subsidies (only if customers know and care!)
- How to improve flat-rate?
- Divide flat-rates in intervals, e.g. ADSL with multiple speeds
- Add usage-based tariff for extra usage, e.g. GPRS block pricing

Access vs. backbone transport

- Tough competition in backbone
- Capacity-based wholesale pricing dominates
- Service differentiation difficult
- Prices close to marginal cost of competition
- Marginal cost of new traffic getting close to zero because the excess fiber capacity becomes sunk cost
- Monopolies and oligopolistic competition in access
- Operators capable of bundling and differentiating
- Evolving technology maintains dynamics in pricing
- Regulators pushing cost-based pricing and LRIC+

Price impact of competition

Willingness to pay per bit

	Volume or bit rate	Acceptable price	Value (€/Mbyte)
SMS	160 bytes	$0.16 € /$ message	1000
Voice	$16 \mathrm{kbit} / \mathrm{s}$	$0.12 € / \mathrm{min}$	1
Movie	$2 \mathrm{Mbit} / \mathrm{s}$	$0.9 € / \mathrm{h}$	0.001

There are 6 orders of magnitude differences in willingness to pay for existing services! How to maintain the value of service differentiation?

3G unbundling?
 Person-to-person via SIP

New Opportunity for SPs

- Services are always provided by the home domain Proxy and Application Server
- Media plane routing and service routing are independent
- SIP service routing allows attaching any Application Server to any call be the AS private or owned by an operator $=>$ Future service market is very competitive! $=>$ Consumer surplus increasing

Pricing in practice?

Systematic use of pricing theory?

OR

Artistic innovation by trial and error?

Yes, both, continuously!

