

Pricing – part 1

S-38.041 Networking Business

Basic concepts Competition

- Who sets the price? Basic cases:
 - Pure monopolist sets the price to maximize his supplier surplus (i.e. profit)
 - *Regulator* sets the price to maximize social surplus (regulated monopoly)
 - *Pure competition* sets the price to maximize consumer surplus (all players are *price takers*)
 - Oligopoly allows the choice of price and quantity which triggers pricing games, and strategies!
- *Tatonnement*, the iterative process where the market equilibrium is achieved via price changes (assuming static utility and cost functions), suffers from
 - Utility and cost functions evolving too fast in innovative markets
 - Some forms of utility functions defying convergence
 - Untruthful declarations (i.e. lying can be beneficial)
 - Finite capacity constraints causing delay

Price, tariff, and charges

- Customers pay *charges* computed from *tariffs*
- *Price* is a charge associated with one unit of usage
- Telecom tariffs are typically non-linear and two-part
- Two-part tariffs are of the form *a*+*bx*
 - -a is fixed charge (e.g. monthly GPRS access charge)
 - -x is quantity (e.g. number of GPRS megabytes per month)
 - -b is unit price (e.g. price per GPRS megabyte)
- Two-part tariff reflects the operator's cost structure, i.e. fixed vs. variable costs
- How to set optimal tariffs?
 - High fixed charge discourages small customers
 - High unit price discourages large customers

Pure monopoly **Basics**

- Monopoly is a situation where a single supplier controls the quantity of production, and thus also the price
- Monopoly is likely when the market involves
 - positive network externality (the average utility per customer increases with larger customer base)
 - economy of scale (the average cost of production decreases with the quantity of good produced)
 - economy of scope (the average cost of production decreases with the number of different goods produced)
- Mathematically, costs are said to be subadditive if $c(x+y) \le c(x)+c(y)$, when all suppliers share the same cost function $c(\cdot)$

Pure monopoly Profit maximization

- Monopolist's problem: maximize_p [$\sum_{j} p_{j} x_{j}(p) c(x)$]
- Profit is maximized when *marginal revenue* equals *marginal cost*
- Welfare would be maximized if price is set to marginal cost
- Regulator would like to enforce marginal cost pricing

Pure monopoly Price discrimination

- First degree price discrimination (i.e. personalized pricing)
 - Operator maximizes profit per customer, $p_i = u_i$
 - Also called perfect price discrimination
 - All customer surplus turns into operator surplus
- Second degree (i.e. versioning, quantity discrimination)
 - Operator posts a set of volume-based prices
 - Customer self-selects to maximize surplus
 - Optimal volume pricing holds the following properties
 - The highest demand customer chooses the version of lowest price per unit
 - Monopolist takes all surplus of lowest demand customers
 - The higher demand customers receive an <u>informational rent</u>
- Third degree (i.e. market segmentation, group pricing)
 - Grouping based on pre-selection, e.g. student id card
 - Different price elasticities, $\varepsilon_i = (\Delta x/x_i)/(\Delta p/p_i)$, enable different prices

Pure monopoly Service bundling and differentiation

- Bundling involves a service package not priced as a sum of the prices of individual services
 - Bundling sometimes enables perfect price discrimination
 - Bundling reduces dispersion in willingness to pay and thus enables greater revenue
- Operator can segment the market via service differentiation
 - Versions of service must not substitute each other (e.g. QoS)
 - Operator must prevent harmful reselling (cmp. wholesale vs. retail)
 - Operator may not be able to price discriminate based on content
 - Operator not allowed to read user-created content
 - Technology-based differentiation difficult (e.g. IP vs. SMS)
 - Operator's charging can be by-passed (e.g. credit cards)

Perfect competition

- Regulator cannot be satisfied even on a welfare maximizing monopoly since innovation requires competition
- Under perfect competition
 - operators participate if, $py^* \ge F + c_v(y^*)$, where y^* is the optimal service volume and *F* is fixed cost
 - *market clearance*, i.e. demand = supply, maximizes social surplus
 - operators experience zero *economic profit* in the long-run (*business profit* can be positive)
- Perfect competition may not be achieved due to
 - non-identical service offerings
 - limited visibility to prices of other players
 - high switching cost paid by customers for changing operators
- An example of high switching cost is the change of a phone number, which the regulator often solves via number portability

Oligopoly

- Oligopoly is typical in telecommunications: a partly competitive and partly regulated market with a small number of operators
- Operator oligopoly can be seen as a game-theoretic set-up between operators, customers, and the regulator
- Game concepts: zero-sum game, Nash equilibrium, public goods, free rider problem, cartel, one-shot vs. repeated games
- Game models for a small number of operators
 - Cournot (quantities posted, prices adjust, all sold)
 - Bertrand (prices posted, quantities adjusted by customers)
 - Stackelberg (for duopoly, either price or quantity leadership)

Cost-based pricing Motivation

- Marginal cost pricing maximizes consumer surplus but causes problems to operators
 - Exclusion of fixed costs
 - Prices difficult to compute
 - Prices can be close to zero or infinity
- Operator's cost recovery can be supported by weighting the social surplus function in favor of operators (Ramsay pricing)
- Two-part tariffs support the two aspects of cost recovery: fixed vs. variable costs, short vs. long-term
- Burden of fixed costs can also be reduced by cutting capacity via peakload pricing
 - Traffic load is moved from busy hour to other time periods
 - Traffic loss vs. capacity savings?

Cost-based pricing "Fair" prices

- Cost-based pricing assumes that costs are shared in a "fair" way among customers
 - *sustainable prices* reflect actual costs and discourage inefficient 'hit-andrun' competition
 - subsidy-free prices reduce churn of subsidizing customers
- Conditions for subsidy-free pricing are
 - charge made to any subset T of customers N is no more than the standalone cost of providing services to those customers

 $\sum_{j \in T} c_j \leq c(T)$, for all $T \subseteq N$

 charge made to any subset of customers is at least the incremental cost of providing services to those customers

 $\sum_{j \in T} c_j \le c(N) - c(N \setminus T)$, for all $T \subseteq N$

- assuming a set of *n* customers $N = \{1, 2, ..., n\}$, subadditive cost function, charges c_j , cost recovery $\sum_{j \in N} c_j = c(N)$

Cost-based pricing Implemention issues

- Problem of knowing the real costs per service
 - Future is less known than history (plus accounting delays)
 - Cost structures keep changing because of technology evolution
 - Common costs dominate
- Solutions for allocating costs to services
 - Top-down approaches (based on historic costs)
 - Fully Distributed Costs, FDC (flat, coefficients, ad hoc?)
 - Activity-Based Costing (e.g. hierarchical process)
 - Bottom-up approaches (based on current costs)
 - Efficient Component Pricing Rule, ECPR
 - Long-Run Incremental Cost, LRIC(+)
- LRIC+ is complex, but favored by regulators because of subsidy-free prices, legacy-free costs, and the right competitive signals to the market (fairness toward incumbents?)

Flat-rate pricing

- Price is set a priori, but the real cost can only be known a posteriori, e.g. broadband Internet access
- Pros
 - Simple and cheap to implement for operators
 - Predictable to customers
- Cons
 - High social cost because of waste of resources (obs. cost savings!)
 - Unfair because of subsidies (only if customers know and care!)
- How to improve flat-rate?
 - Divide flat-rates in intervals, e.g. ADSL with multiple speeds
 - Add usage-based tariff for extra usage, e.g. GPRS block pricing

Access vs. backbone transport

- Tough competition in backbone
 - Capacity-based wholesale pricing dominates
 - Service differentiation difficult
 - Prices close to marginal cost of competition
 - Marginal cost of new traffic getting close to zero because the excess fiber capacity becomes sunk cost
- Monopolies and oligopolistic competition in access
 - Operators capable of bundling and differentiating
 - Evolving technology maintains dynamics in pricing
 - Regulators pushing cost-based pricing and LRIC+

Price impact of competition

Source: Ministry of Transport and Communications/Price level of the Finnish telecommunications charges 2002, 15/2003

Willingness to pay per bit

	Volume or bit rate	Acceptable price	Value (€/Mbyte)
SMS	160 bytes	0.16 €/message	1000
Voice	16 kbit/s	0.12 €/min	1
Movie	2 Mbit/s	0.9 €/h	0.001

There are 6 orders of magnitude differences in willingness to pay for existing services! How to maintain the value of service differentiation?

- Services are always provided by the home domain Proxy and Application Server
- Media plane routing and service routing are independent
- SIP service routing allows attaching any Application Server to any call be the AS private or owned by an operator => Future service market is very competitive! => Consumer surplus increasing

Pricing in practice?

Systematic use of pricing theory?

OR

Artistic innovation by trial and error?

Yes, both, continuously!