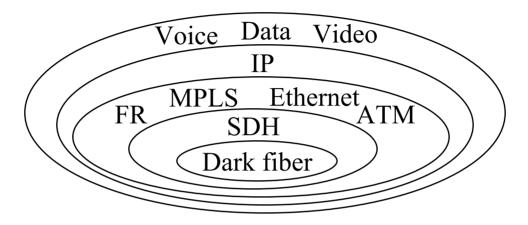


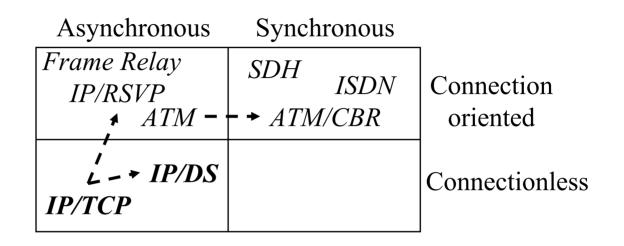

# Pricing – part 2


S-38.041 Networking Business



- Introduction: early adopters, skimming vs. aggressive growth
- Growth: increasing demand, little competition, high margins
- Maturity: differentiation pressure, tough competition, low margins
- <u>Decline</u>: cost cutting, harvesting niche segments, high margins




Sales of capacity between pre-defined similar end-points



- Customers are other operators or individual firms
- Portfolio of services
  - point-to-point vs. multipoint
  - basic (dark fiber) vs. value-added (managed IP router service)
  - voice vs. data vs. video
- ATM being gradually replaced by Ethernet and MPLS
- Pricing based on Service Level Agreements (SLA) and traffic parameters (peak rate, mean rate, data loss probability, max delay, mean delay, etc)



Impact of IP



- Growth of IP traffic involves evolution from
  - inelastic to *elastic* applications (e.g. video, audio and voice coding)
  - guaranteed to best-effort services
  - deterministic to statistical multiplexing (ref. effective bandwidth)
  - bottleneck control to over-dimensioning
  - layer 2 VPN to layer 3 IP VPN
- Key issue: demand vs. supply of backbone capacity?



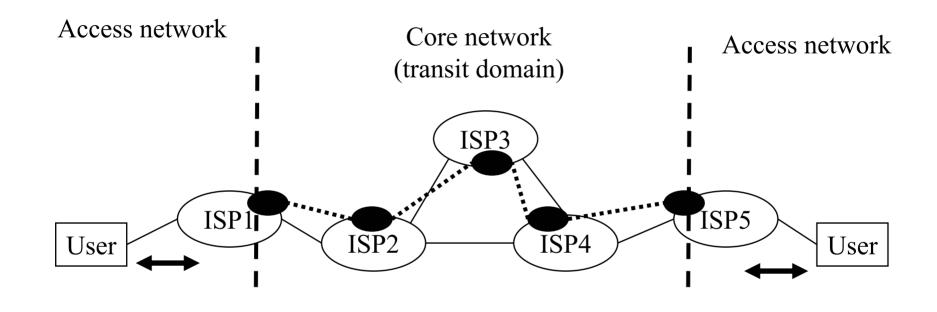
### Backbone services Service Level Agreement (SLA)

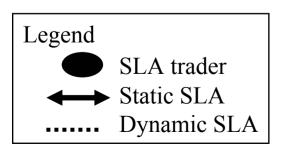
• Service level agreement: a documented result of a negotiation between a customer and a provider of a service that specifies the levels of availability, performance, operation and other attributes of the service

• Static SLA management: SLA contract is made between two human parties and its terms cannot be changed without human intervention

• **Dynamic SLA management**: SLAs are negotiated and contracted automatically using some signaling procedures

• **SLA trading**: dynamic SLA management where information on service provisioning, routing, and pricing are exchanged between providers





#### SLA evolution scenario

- 1. Static SLA management in telecom networks and dedicated data networks
- 2. Static SLA management in IP-based best effort networks
- 3. Static SLA management in IP diffserv (DS) networks ?
- 4. Dynamic SLA management in IP DS networks?
- DS has the following SLA characterictics
  - Scope of large *traffic aggregates* (as opposed to ATM SVC)
  - Typical traffic aggregates are VoIP, WWW, specific routes
  - Aggregates appear as *Traffic Conditioning Agreements* (TCA)
  - Traffic flows through DS domains (via *ingress/egress nodes*)
  - Standardized Per-Hop-Behaviors (PHB)
    - *Expedited Forwarding* (EF)
    - Assured Forwarding (AF)



#### SLA traders





- Dynamic SLAs between peer ISPs
- Static SLAs for end-users



Summary of SLA trading

- SLA trading has not been tested in real deployments
- SLA trading suits best for large networks and ISPs
- Transition from static to dynamic SLA trading is a major management challenge
- Based on simulation results, SLA trading can improve network utilization by up to 40% compared to a traditional, shortest-path routed inter-domain network
- The residual bandwidth pricing strategy is suitable for SLA trading since it ensure that prices increase with SLA or link load



#### Internet access services Congestion control

- The end-to-end bottleneck may occur at different points
  - In dedicated access:
    - Increase subscriber access speed (e.g. ADSL)
    - Push resource sharing closer to subscribers (e.g. HomePNA)
  - In shared access/backbone/server: apply *congestion control*
- Congestion should be optimized
  - Too much congestion  $\Rightarrow$  *negative network externality*
  - Too little congestion  $\Rightarrow$  waste of resources
- Options for congestion control
  - Over-dimensioning (waste of resources)
  - Call admission control, e.g. RSVP blocking (latest customers suffer)
  - Automatic flow control, e.g. TCP (all customers suffer)
  - Human fairness control, e.g. HomePNA (group discipline)
  - Congestion pricing (maximal social surplus?)



#### Internet access services Congestion pricing - theory

- Congestion price is two-part: normal + externality,  $p+p_E$ 
  - Social surplus maximization
  - (1)  $\max \sum_{j} u_j(x_j, y) c(k)$ , where  $y = \sum_i x_i / k$ , k=total fixed capacity  $\Rightarrow p_E = -(1/k) \sum_j du_j(\underline{x}_j, y) / dy$ , where  $\underline{x}_j$ =socially optimal demand – Individual maximization of surplus for consumer *i* 
    - (2)  $max[u_i(x_i, y) p_E x_i] \Rightarrow x_i = \underline{x}_i$ , if number of users is large
  - Social and individual optima are the same, Nash equilibrium!
  - Congestion price converges to optimal price via tatonnement: network determines  $p_E$  using step (1) and publishes it, then each consumer *i* solves step (2) to find  $\underline{x}_i$ , and so on
  - $u_i$  are unknown  $\Rightarrow$  network must vary  $p_E$  until finding equilibrium
  - y is unknown to consumers  $\Rightarrow$  consumers estimate it via congestion
- Congestion pricing suits for expensive bottlenecks like radio
- Congestion pricing facilitates automatic optimal capacity planning via the customer feedback loop



# Internet access services

Congestion pricing - practice

- Time-of-day pricing (e.g. fixed-price tickets in Internet Café)
- Pricing per application & traffic type
  - Types pre-defined using diffserv, e.g. www, VoIP, etc
  - Automatic traffic classification and resource re-allocation
- Pricing per user's willingness-to-pay
  - Price-driven separation of service classes (e.g. Paris Metro Pricing)
  - Priority service classes based on relative quality (e.g. via diffserv)
- Note that flat-rate pricing well reflects the operator's large share of fixed cost, but cannot efficiently tackle the unavoidable problem of temporary congestion!



## Content services

Private vs. public goods

Private good (e.g. candy bar)

- You consume one, there is one less for others *depletetable*
- If consumed no one else can *excludable*
- Marginal cost > 0
- Price = marginal cost.
  Achieved on ideal market when supply = demand

Public good (e.g. radio broadcast)

- *Nondepletable* when used by one, the same amount is available to others.
- *Nonexcludable* Use by one does not exclude others from using the good.
- Marginal cost  $\approx 0$
- Price ≈ 0 → fixed cost is not recovered → taxation, nonusage based fees



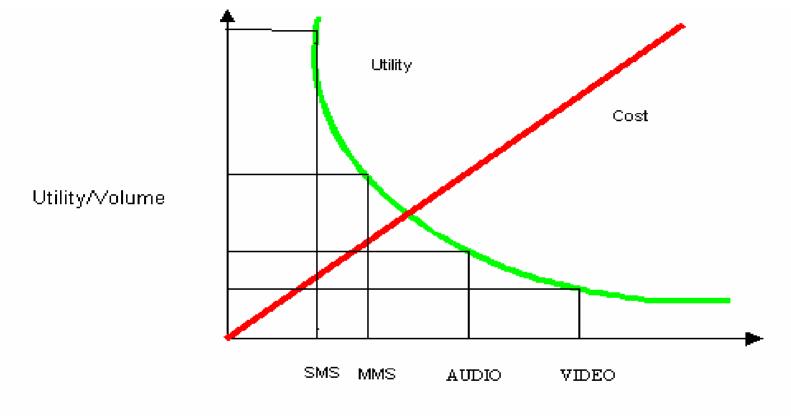
## Content services

Evolution examples

- <u>Best-effort IP service</u>: Initially public good → Flat monthly fee → Congestion → Private good externality.
- <u>Telephone call</u>: In PSTN and over radio interface = private good ("candy bar") → price/unit.
- <u>Value-added IP service, e.g. VoIP</u>: Initially usage fee.
  CPU and memory getting cheaper (Moore's law) →
  Marginal cost of new customer ≈ 0 → Flat-rate.
- <u>Digital Content</u>: Marginal cost ≈ 0 → Copyright and IPR control enable both private and public goods. Copyright violations, e.g. peer-to-peer traffic → development of digital rights management (DRM) or bundling with other private goods!



# Service bundling


Vertical vs. horizontal bundling in GSM

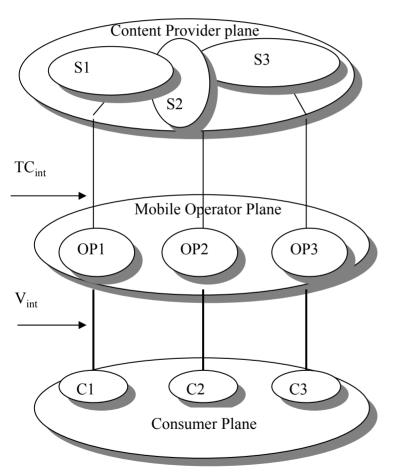
- Vertical bundling
  - Bundling of access with content
  - For instance weather report over SMS
- Horizontal bundling
  - Bundling of access services (e.g. multiple radios, circuit vs. packet-switched, voice vs. data)
  - Bundling of vertically bundled services (e.g. weather report over SMS vs. WAP)
- Bundling enables
  - Cross-subsidies and service differentiation
  - Value-based pricing, i.e. flexible testing of subscriber's willingness-to-pay



# Service bundling

Roll-out of new services



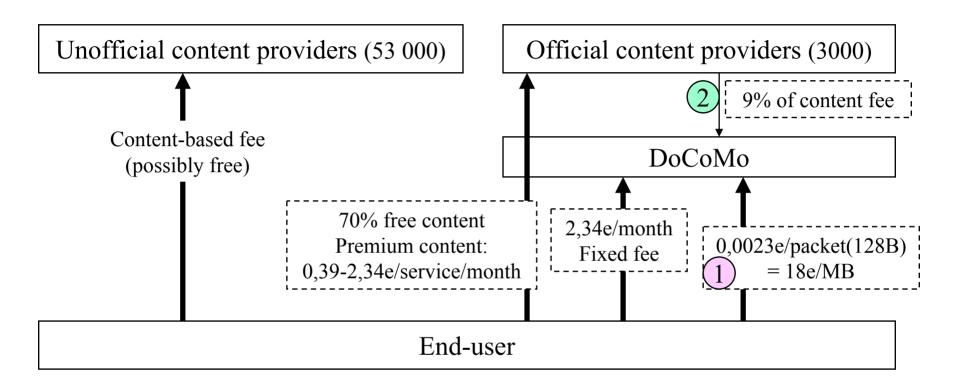

#### Volume

- Cross-subsidies enable early roll-out of still non-profitable services
- Operator can also take risk of new handsets via handset subsidies



# Value-based pricing model

Mobile operator view




• Maximise value per byte.  $p = max \{ v/B \}$ 

- Planes
  - Content Providers (S)
  - Mobile Operators (OP)
  - Consumers (C)
- Interfaces
  - Value interface (V)
  - Transport-content interface (TC)
- Competition at V and TC
- Experimentation via TC
- Revenue sharing at TC

Source: Renjish Kumar Kaleelatzicathu Ratna, 2004

# Case: DoCoMo i-mode pricing



# Accounts for 87% of the i-mode ARPU Accounts for less than 1% of the I-mode ARPU

Source: Sandro Grech, 2003 (prices 2002)

# Pricing of telecom equipment

- Traditionally pricing is based on hardware capacity (e.g. switching centers, routers, base stations), which hides software R&D costs → pressure to price software
- Capacity pricing is adapted per type of capacity
  - GSM MSC switching capacity (number of simultaneous calls)
  - GSM HLR storage capacity (number of subscribers)
  - GSM BTS capacity (number of TRXs)
  - IP router capacity (bits/sec, packets/sec, number of ports, etc)
  - Server transaction capacity (SMS/sec, locations/sec, etc)
- Growing exploitation of general purpose operating systems and hardware (e.g. Unix) in network elements is likely to un-bundle the pricing of software and hardware