
S-38.121 / Fall-04 / RKa, NB Multicast1-1

Multicast routing principles in Internet

Motivation

Recap on graphs

Principles and algorithms

S-38.121 / Fall-04 / RKa, NB Multicast1-2

Multicast capability has been and is under
intensive development since the 1990’s

• MBone used to multicast IETF meetings from 1992

• Extends LAN broadcast capability to WAN in an efficient manner

• Valuable applications

– resource discovery

– multimedia conferencing, teaching, gaming

– streaming audio and video

– network load minimization by replacing many point-to-point
transmissions

S-38.121 / Fall-04 / RKa, NB Multicast1-3

Multicast reduces network load and delay

• For example

• 6 transmissions vs. 4 transmissions

• Generally unreliable transmission (UDP)

• In reliable multicast the source must retransmit missing packets
with unicast

S-38.121 / Fall-04 / RKa, NB Multicast1-4

Resource discovery by multicast simplifies
network management (1)

• No need for lists of neighbors, just use standard multicast address

OSPF router

OSPF hello [ÿall OSPF routers]

BOOTP

RIP-2 router
RIP response [ÿall RIP routers]

Bootstrap serversHost

Note: in this case,
multicast only
on the local network

S-38.121 / Fall-04 / RKa, NB Multicast1-5

Resource discovery by multicast simplifies
network management (2)

• How to find corporate DNS-serverÿ multicast to all nodes
in corporate network.

• Network is easily flooded with messages.
• TTL can be used to limit the scope of a broadcast – “expanding

ring search”
ÿ find nearest DNS (or other server)
– when TTL=0 in multicast packet, no ICMP message is returned

DNS server

DNS server

S-38.121 / Fall-04 / RKa, NB Multicast1-6

Conferencing requirements include

• Multiple sources, multiple recipients, multiple media

• Variable membership

• Small conferences with intelligent media control (what is sent to
where)

• Large conferences require media processing in special devices

• QoS is important

– Low delay

– Low delay variation

– Low packet loss

S-38.121 / Fall-04 / RKa, NB Multicast1-7

Multipoint sessions differ from point-to-point
communication

• Participants may join and leave the session.

• Receiver-makes good principle instead of session
parameter negotiation.

• Window based flow control does not apply:

ÿ use UDP / connectionless protocols

• Packets are sent to a group address instead of a
host address

SS
M

S-38.121 / Fall-04 / RKa, NB Multicast1-8

Multicast routing algorithms

S-38.121 / Fall-04 / RKa, NB Multicast1-9

Flooding is the simplest multicast algorithm

• Need to keep state (DB) in nodes
• No group membership: target is all nodes

(broadcast)

Flooding algorithm:

Search corresponding
entry in DB

Search corresponding
entry in DB

foundfound

Insert M into DBInsert M into DB

Send M to all
links but L

Send M to all
links but L

no

entry in DB
older

entry in DB
older

yes

Update M in DBUpdate M in DB

Send M to all
links but L

Send M to all
links but L

yes

Build M’ from DBBuild M’ from DB

Send M’ to sender
on L

Send M’ to sender
on L

no entry in DB
newer

entry in DB
newer

yes

stopstop

noÿ M is a duplicate

• Examples: OSPF, Usenet news, etc.

Receive M from L

S-38.121 / Fall-04 / RKa, NB Multicast1-10

Trace information is an alternative to the
database in flooding

• Trace info in message lists all passed nodes
• If the neighbor is in trace, do not send
• Avoids costly database reads but may accept same message several

times.
• Traces used in e.g. Usenet news
• Application-layer multicast, not efficient on network layer

Flooding guarantees that node will not forward the
same packet twice. It does not guarantee that node
will receive the same packet only once!ÿ greedy algorithm

Flooding does not depend on routing tablesÿ robust

S-38.121 / Fall-04 / RKa, NB Multicast1-11

Networks are modeled as graphs

G = (V, E)

• V – set ofverticesor nodes(non-empty, finite set)
• E – set ofedgesor links.

E = {ej | j = 1, 2, …, M}
ej = (vi, vk) = (i, k)

• Nodesi andk areadjacentif link (i, k) exists.
• Nodesi andk are also calledneighbors.

· Vertex, node – kärki,
solmu
· Edge, link – syrjä,
linkki, sivu, kaari,
haara
· Adjacent – viereinen
· Neighbor – naapuri

· Vertex, node – kärki,
solmu
· Edge, link – syrjä,
linkki, sivu, kaari,
haara
· Adjacent – viereinen
· Neighbor – naapuri

S-38.121 / Fall-04 / RKa, NB Multicast1-12

Links are bi-directional, arcs are
unidirectional

• Unidirectional links,
aj = (vi, vk) = [i,k]
are calledarcs.

• Thedegree of a nodeis the number of its
neighbors or the number of links incident on
the node.

• If links and nodes have properties, the graph
is called anetwork.

Undirected graph (only links)Directed graph (also arcs)

· Degree of a node –
solmun aste
· Arc – kaari
· Directed graph –
suunnattu graafi

· Degree of a node –
solmun aste
· Arc – kaari
· Directed graph –
suunnattu graafi

S-38.121 / Fall-04 / RKa, NB Multicast1-13

Graphs with parallel links are called
multigraphs

• Links between a node and itself
areself loops.

• Graph with no parallel links and
no self loops is asimple graph.

• A path in a network is a sequence of links beginning
at some nodesand ending at some nodet (= s,t-path).

• If s = t, the path is called acycle. If an intermediate node
appears no more than once, it is asimple cycle.

ss

vvuu

tt

· Cycle, loop – silmukka
· Path – polku
· Cycle, loop – silmukka
· Path – polku

S-38.121 / Fall-04 / RKa, NB Multicast1-14

A graph isconnectedif there is at least one
path between every pair of nodes.

• A subset of nodes with paths to one another is a
connected component.

Reflective: By def.∃ i,i-path
Symmetric: ∃ i,j-pathÿ ∃ j,i-path
Transitive: ∃ i,j-path and∃ j,k-pathÿ ∃ i,k-path

Components are equivalence classes and the
component structure is a partition of the graph.

Partition applies to links and nodes alike.
· Connected –
yhteydellinen, yhdistetty
· Connected –
yhteydellinen, yhdistetty

S-38.121 / Fall-04 / RKa, NB Multicast1-15

A directed graph isstrongly connectedif there is a
directed path from every node to every other node.

• Directed connectivity is not symmetric.

• A subset of nodes with directed paths
from any one node to any other is a
strongly connected component.

• A node belongs to exactly one strongly
connected c. An arc is part of at most one
strongly connected c.

AA

DD
CCBB

EE

FF

HHGG

· Strongly connected –
vahvasti yhteydellinen
· Directed path –
suunnattu polku

· Strongly connected –
vahvasti yhteydellinen
· Directed path –
suunnattu polku

S-38.121 / Fall-04 / RKa, NB Multicast1-16

A tree is a graph without cycles

• Given a graphG = (V, E), H = (V ,́ E)́ is asubgraphof
G if V´ ⊂ V andE´ ⊂ E

• A spanning treeis a connected graph without cycles.
(Connects all nodes in the graph)

• If graph is not necessarily connected, we talk about a
forest.

· Subgraph – aligraafi
· Tree – puu
· Spanning tree –
virittäjäpuu
· Forest – metsä

· Subgraph – aligraafi
· Tree – puu
· Spanning tree –
virittäjäpuu
· Forest – metsä

S-38.121 / Fall-04 / RKa, NB Multicast1-17

Spanning trees (ST) model minimally
connected networks

• A spanning treeis connects all nodes without loops.

• Only a single path exists between any two nodes in a ST
ÿ routing is trivial.

• If a graph hasN nodes, any tree spanning the nodes has
exactlyN - 1 edges.

• Any forest withk components has exactly
N - k edges.
– proof by induction starting from graph with no edges.

S-38.121 / Fall-04 / RKa, NB Multicast1-18

A set of edges whose removal disconnects a
graph is called adisconnecting set.

• XY-cutsetpartitions a graph to subgraphs X and Y.

• In a tree any edge is aminimal cutset.

• A minimal set of nodes whose removal partitions the
remaining nodes into two connected subgraphs is called a
cut.

· Disconnecting set –
erotusjoukko
· Cut – leikkaus
· XY-cutset – XY-
leikkausjoukko

· Disconnecting set –
erotusjoukko
· Cut – leikkaus
· XY-cutset – XY-
leikkausjoukko

S-38.121 / Fall-04 / RKa, NB Multicast1-20

A graph can be presented with an
adjacency matrixor anincidence matrix

A
B
C
D
E

1 2 3 4 5 6
1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 1 0
0 0 1 1 0 1
0 0 0 0 1 1

Incidence Matrix

For directed graphs, +1 is
source and -1 is sink of an arc

Link

N
o

d
e

Node
A B C D E

A
B
C
D
E

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

Adjacency Matrix

For an undirected graph, the
adjacency matrix is symmetric.

N
o

d
e

· Adjacency matrix –
Naapuruusmatriisi
· Adjacency matrix –
Naapuruusmatriisi

· Incidence matrix –
Liitäntämatriisi
· Incidence matrix –
Liitäntämatriisi

AA

DDCC

BB

EE

4

1

32

65

S-38.121 / Fall-04 / RKa, NB Multicast1-21

For graph algorithms linked list presentation
of adjacency is convenient

A
B
C
D
E

Node

1 B A 3 D B

0

Link NextLink Next

AA

DDCC

BB

EE

4

1

32

65

S-38.121 / Fall-04 / RKa, NB Multicast1-22

A tree can be traversed
by breadth-first-search

AA

HHGG

DDCCBB

FFEE

II

KKJJ

LL

Void ÿ BfsTree (n, root, n_adj_list)
dcl n_adj_list [n, list] /* array of lists of neighbors

scan_queue [queue]

InitializeQueue (scan_queue)
Enqueue (root, scan_queue)

while NotEmpty (scan_queue)
nodeÿ Dequeue (scan_queue)
Visit (node)
for each (neighbor, n_adj_list[node])

Enqueue (neighbor, scan_queue)

Works for directed links
· Breadth-first-search
– leveyshaku
· Breadth-first-search
– leveyshaku

S-38.121 / Fall-04 / RKa, NB Multicast1-23

A tree can also be traversed
by depth-first-search

AA

LLKK

JJIIBB

DDCC

EE

FF HH

GG

Void ÿ DfsTree (n, root, n_adj_list)
dcl n_adj_list [n, list]

Visit (root)
for each (neighbor, n_adj_list[node])

DfsTree (n, neighbor, n_adj_list)

Works for directed links

· Depth-first-search –
syvyyshaku
· Depth-first-search –
syvyyshaku

S-38.121 / Fall-04 / RKa, NB Multicast1-24

An undirected graph can be traversed
by depth-first-search

Void ÿ Dfs (n, root, n_adj_list)
dcl n_adj_list [n, list],

visited [n] /* keeps track of progress */

void ÿ DfsLoop (node)
if not visited [node]

visited [node]ÿ TRUE
Visit (node)
for each (neighbor, n_adj_list[node])

DfsLoop (neighbor)

visitedÿ FALSE
DfsLoop (root)

S-38.121 / Fall-04 / RKa, NB Multicast1-25

We can now find and label the connected
components of an arbitrary graph

Void ÿ LabelComponents (n, n_adj_list)
dcl n_component_nr[n], n_adj_list[n, list]

void ÿ Visit(node)
n_component_nr[node]ÿ ncomponents

n_component_nrÿ 0
ncomponentsÿ 0
for each (node, nodeset)

if (n_component_nr[node] = 0
ncomponents++
Dfs (node, n_adj_list)

S-38.121 / Fall-04 / RKa, NB Multicast1-26

Minimum spanning tree (MST) is the
spanning tree with minimum cost

• We assign a length to each edge of the graph. “Length” can be
distance, cost, a measure of delay or reliability.

• We look for minimum total length/cost, thus we talk about MST.

• If the graph is not connected, we may look for a minimum
spanning forest.

n = c + e

wheren is the number of nodes,c the number of components

andenumber of edges selected so far holds always.

S-38.121 / Fall-04 / RKa, NB Multicast1-27

Multicast to a spanning tree leads to
reception only once in each node

• Requires on/off bit (∈ ST) per link

• Disadvantages

– No group membership

– Concentrates traffic to the ST-links

• Ideal would be a tree that

– spans the group members only

– minimizes state information in
nodes

– optimizes routes based on metrics

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

S-38.121 / Fall-04 / RKa, NB Multicast1-28

A greedy minimum spanning tree algorithm
List ÿ Greedy (properties)

dcl properties [list, list],
candidate_set [list], solution [list]

void ÿ GreedyLoop (*candidate_set, *solution)
dcl test_set[list], candidate_set[list], solution[list]

elementÿ BestElementOf (candidate_set) /* for MST: shortest edge
test_setÿ element∪ solution
If test_set is feasible /* for MST: no cycles

solutionÿ test_set
candidate_setÿ candidate_set \ element
If candidate set is not Empty

Greedy_Loop(*candidate_set, *solution)

solutionÿ ∅
If (candidate_setÿ ElementsOf (properties)) is not Empty

GreedyLoop (*candidate_set, *solution)
return(solution)

S-38.121 / Fall-04 / RKa, NB Multicast1-29

Reverse-path forwarding
• Reverse-path forwarding computes an implicit spanning tree per source

• First used in MBone

Receive MReceive M

S=source
I=interface
S=source

I=interface

Forward on all
interfaces but I

I∈shortest
path to S

yes

no

Note: The path is computed
from the current node to S.
In symmetric networks = path
from S to the current node.

Stop

Looking one step further: send only if
the current node is on shortest path
from S to next node.
Requires 1 bit per source and link
in link state DB

S-38.121 / Fall-04 / RKa, NB Multicast1-30

Reverse path forwarding properties

• Different tree for each sourceÿ traffic
is spread over multiple links leading to
better network utilization

• Guarantees fastest possible delivery
since it uses the shortest paths only

• No group membershipÿ packets
flooded to the whole network

– can be scoped by TTL

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

6

S-38.121 / Fall-04 / RKa, NB Multicast1-31

“Flood and prune” introduces dynamic group
membership

S
B Leaf

Flood m

∃ Group
members

NoPrune

ÿ B does not
send to group G
on this interface

source

Prunes on all
interfaces

Prune Yes
A

upstream
router

Learned from e.g.
Internet Group Membership
Protocol (IGMP)

S-38.121 / Fall-04 / RKa, NB Multicast1-32

”Flood and prune” – example

Drawbacks:

• first packet is flooded
to the whole network

• nodes must keep state
per S and G.

– state is transient
(timed out)

ÿ Suitable for dense trees

S

B

D

A

E

C

G

F

R

R

prune

prune

prune

prune

flood

S-38.121 / Fall-04 / RKa, NB Multicast1-33

A Steiner treespans the group with minimal
cost according to link metrics

• Has never actually been used, only simulated:

– Finding the minimum Steiner tree in a graph has exponential complexity

– The tree is undirected: links must be symmetrical

– Algorithm is monolithic, cannot be distributed

– The tree is unstable when changes occur: traffic routes change dramatically
when e.g a member leaves.

• Popular because of its mathematical complexity

• Leads to center-based approach (CBT, PIM)

A C

ED

B1 2

3 4 5

6

A C

ED

B1 2

3 4 5

A C

ED

B1 2

3 4 5

6

S-38.121 / Fall-04 / RKa, NB Multicast1-34

Center-based trees (1)

AA BB

EE

FF

IIHH

DDCC

GG– If an intermediate router already is a
member of the tree, it only adds the
interface without forwarding the join
message. Consequently, a branch is created
in the multicast tree.

GG

• Choose a center (rendezvous point, core)

• The recipients send join commands toward the
center

– Each router on the path toward the center
processes the join message and adds the
interface on which the join message is
received to the forwarding table for the
group. The join message continues to the
next router toward the center.

JJ

S-38.121 / Fall-04 / RKa, NB Multicast1-35

Center-based trees (2)

AA BB

EE

FF

IIHH

DDCC

GGGG

• Senders send packets to the center.

– The first router that belongs to the group’s
tree intercepts the packet and forwards it to
all interfaces of the multicast group. Each
router receiving a packet forwards it on all
interfaces belonging to the tree, except the
one that the packet was received on.

– Senders are not required to be members of
the group

JJ

How to choose the center?

S-38.121 / Fall-04 / RKa, NB Multicast1-36

Souce based trees and shared trees

S

S

S

S

S

S

Shared treeSource based trees

S-38.121 / Fall-04 / RKa, NB Multicast1-37

Multicast routing example

R5

R3

R6

G1 G1 S2

R10

R2R1S1

R11

R4 R7

R9

R8

G1

S3

192.5.1/24 192.5.2/24

192.5.3/24
8

5 5

5
5

8 5
192.6.1/24

192.7.1/24

5

10

5
128.5.1/24

128.5.2/24

128.5.3/24

8
W1

W2

S-38.121 / Fall-04 / RKa, NB Multicast1-38

Source based trees for G1

R5 R6

G1 G1

R10

R1S1

G1 192.7.1/24

192.5.1/24

Tree for
source S1

R5 R6

G1 G1 S2

R11

R4 R7
R8

S3

192.5.2/24

192.7.1/24G1

Tree for source S3

R5

R3

R6

G1 G1 S2

R10

R2

R11

G1

192.5.1/24 192.5.2/24

192.7.1/24

R4

Tree for
source S2

S-38.121 / Fall-04 / RKa, NB Multicast1-39

Shared tree for G1

R5

R3

R6

G1 G1 S2

R2R1S1

R11

R7
R8

G1

S3

192.5.1/24 192.5.2/24

192.7.1/24

R4

Rendezvous Point in PIM
Core in CBT

