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DISCRETE DISTRIBUTIONS

Generating function (z-transform)

Definition

Let X be a discrete r.v., which take non-negative integer values, X ∈ {0, 1, 2, . . .}.
Denote the point probabilities by pi

pi = P{X = i}
The generating function of X denoted by G(z) (or GX(z); also X(z) or X̂(z)) is defined by

G(z) =
∞∑
i=0

piz
i = E[zX ]

Rationale:

• A handy way to record all the values {p0, p1, . . .}; z is a ‘bookkeeping variable’

• Often G(z) can be explicitly calculated (a simple analytical expression)

• When G(z) is given, one can conversely deduce the values {p0, p1, . . .}
• Some operations on distributions correspond to much simpler operations on the generating

functions

• Often simplifies the solution of recursive equations



J. Virtamo Traffic theory and traffic management / Discrete Distributions 2

Inverse transformation

The problem is to infer the probabilities pi, when G(z) is given.

Three methods

1. Develop G(z) in a power series, from which the pi can be identified as the coefficients of

the zi. The coefficients can also be calculated by derivation

pi =
1

i!

diG(z)

dzi

∣∣∣∣
z=0

=
1

i!
G(i)(0)

2. By inspection: decompose G(z) in parts the inverse transforms of which are known;

e.g. the partial fractions

3. By a (path) integral on the complex plane

pi =
1

2πi

∮ G(z)

zi+1
dz

path encircling the origin (must be chosen so

that the poles of G(z) are outside the path)
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Example 1

G(z) =
1

1− z2
= 1 + z2 + z4 + · · ·

⇒ pi =




1 for i even

0 for i odd

Example 2

G(z) =
2

(1− z)(2− z)
=

2

1− z
− 2

2− z
=

2

1− z
− 1

1− z/2

Since
A

1− az
corresponds to sequence A · ai we deduce

pi = 2 · (1)i − 1 · (1
2)

i = 2− (1
2)

i
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Calculating the moments of the distribution with the aid of G(z)

Since the pi represent a probability distribution their sum equals 1 and

G(1) = G(0)(1) =
∞∑
i=1

pi · 1i = 1

By derivation one sees

G(1)(z) = d
dzE[zX ]

= E[XzX−1]

G(1)(1) = E[X ]

By continuing in the same way one gets

G(i)(1) = E[X(X − 1) · · · (X − i + 1)] = Fi

where Fi is the ith factorial moment.
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The relation between factorial moments and ordinary moments (with respect to the origin)

The factorial moments Fi = E[X(X − 1) · · · (X − i + 1)] and ordinary moments (with resect

to the origin) Mi = E[Xi] are related by the linear equations:




F1 = M1

F2 = M2 −M1

F3 = M3 − 3M2 + 2M1
...




M1 = F1

M2 = F2 + F1

M3 = F3 + 3F2 + F1
...

For instance,

F2 = G(2)(1) = E[X(X − 1)] = E[X2]− E[X ]

⇒ M2 = E[X2] = F2 + F1 = G(2)(1) + G(1)(1)

⇒ V[X ] = M2 −M 2
1 = G(2)(1) + G(1)(1)− (G(1)(1))2 = G(2)(1) + G(1)(1)(1− G(1)(1))
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Direct calculation of the moments

The moments can also be derived from the generating function directly, without recourse to

the factorial moments, as follows:

d
dz
G(z)

∣∣∣∣
z=1

= E[XzX−1]z=1 = E[X ]

d
dzz

d
dzG(z)

∣∣∣∣
z=1

= E[X2zX−1]z=1 = E[X2]

Generally,

E[Xi] = d
dz

(z d
dz

)i−1G(z)
∣∣∣∣
z=1

= (z d
dz

)iG(z)
∣∣∣∣
z=1
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Generating function of the sum of independent random variables

Let X and Y be independent random variables. Then

GX+Y (z) = E[zX+Y ] = E[zXzY ]

= E[zX ]E[zY ] independence

= GX(z)GY (z)

GX+Y (z) = GX(z)GY (z)

In terms of the original discrete distributions



pi = P{X = i}
qj = P{Y = j}

the distribution of the sum is obtained by convolution p⊗ q

P{X + Y = k} = (p⊗ q)k =
k∑

i=0
piqk−i

Thus, the generating function of a distribution obtained by convolving two distributions

is the product of the generating functions of the respective original distributions.
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Compound distribution and its generating function

Let Y be the sum of independent, identically distributed (i.i.d.) random variables Xi,

Y = X1 + X2 + · · ·XN

where N is a non-negative integer-valued random variable.

Denote


GX(z) the common generating function of the Xi

GN(z) the generating function of N

We wish to calculate GY (z)

GY (z) = E[zY ]

= E[E
[
zY |N

]
]

= E[E
[
zX1+···XN |N

]
]

= E[E
[
zX1 · · · zXN |N

]
]

= E[GX(z)N ]

= GN(GX(z))

GY (z) = GN(GX(z))
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Bernoulli distribution X ∼ Bernoulli(p)

A simple experiment with two possible outcomes: ‘success’ and ‘failure’.

We define the random variable X as follows

X =




1 when the experiment is successful; probability p

0 when the experiment fails; probability q = 1− p

Example 1. X describes the bit stream from a traffic source, which is either on or off.

The generating function

G(z) = p0z
0 + p1z

1 = q + pz

E[X ] = G(1)(1) = p

V[X ] = = G(2)(1) + G(1)(1− G(1)) = p(1− p) = pq

Example 2. The cell stream arriving at an input

port of an ATM switch: in a time slot (cell slot)

there is a cell with probability p or the slot is

empty with probability q.
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Binomial distribution X ∼ Bin(n, p)

X is the number of successes in a sequence of n independent Bernoulli trials.

X =
n∑

i=1
Yi where Yi ∼Bernoulli(p) and the Yi are independent (i = 1, . . . , n)

The generating function is obtained directly from the generating function q+pz of a Bernoulli

variable

G(z) = (q + pz)n =
n∑

i=1


n

i


pi(1− p)n−izi

By identifying the coefficient of zi we have

pi = P{X = i} =


n

i


pi(1− p)n−i




E[X ] = nE[Yi] = np

V[X ] = nV[Yi] = np(1− p)

A limiting form when λ = E[X ] = np is fixed and n →∞:

G(z) = (1− (1− z)p)n = (1− (1− z)λ/n)n → e(z−1)λ

which is the generating function of a Poisson random variable.
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The sum of binomially distributed random variables

Let the Xi (i = 1, . . . , k) be binomially distributed with the same parameter p (but with

different ni). Then the distribution of their sum is distributed as

X1 + · · · + Xk ∼ Bin(n1 + · · · + nk, p)

because the sum represents the number of successes in a sequence of n1 + · · · + nk identical

Bernoulli trials.
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Multinomial distribution

Consider a sequence of n identical trials but now each trial has k (k ≥ 2) different outcomes.

Let the probabilities of the outcomes in a single experiment be p1, p2, . . . , pk (
∑k

i=1 pi = 1).

Denote the number of occurrences of outcome i in the sequence by Ni. The problem is to

calculate the probability p(n1, . . . , nk) = P{N1 = n1, . . . , Nk = nk} of the joint event {N1 =

n1, . . . , Nk = nk}.
Define the generating function of the joint distribution of several random variables N1, . . . , Nk

by

G(z1, . . . , zk) = E[zN1
1 · · · zNk

k ] =
∞∑

n1=0
. . .

∞∑
nk=0

p(n1, . . . , nk)z
n1
1 · · · znk

k

After one trial one of the Ni is 1 and the others are 0. Thus the generating function corre-

sponding one trial is (p1z1 + · · · + pkzk).

The generating function of n independent trials is the product of the generating functions of

a single trial, i.e. (p1z1 + · · · + pkzk)
n.

From the coefficients of different powers of the zi variables one identifies

p(n1, . . . , nk) =
n!

n1! · · ·nk!
pn1

1 · · · pnk
k

when n1 + . . . + nk = n,

0 otherwise
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Geometric distribution X ∼ Geom(p)

X represents the number of trials in a sequence of independent Bernoulli trials (with the

probability of success p) needed until the first success occurs

pi = P{X = i} = (1− p)i−1p

i = 1, 2, . . .

Note that sometimes the distribution of X − 1 is

defined to be the geometric distribution (starts from

0)

Generating function

G(z) = p
∞∑
i=1

(1− p)i−1zi =
pz

1− (1− p)z

This can be used to calculate the expectation and the variance:

E[X ] = G′(1) =
p(1− (1− p)z) + p(1− p)z

(1− (1− p)z)2

∣∣∣∣
z=1

=
1

p

E[X2] = G′(1) + G′′(1) =
1

p
+

2(1− p)

p2

V[X ] = E[X2]− E[X ]2 =
1− p

p2
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Geometric distribution (continued)

The probability that for the first success one needs more than n trials

P{X > n} =
∞∑

i=n+1
pi = (1− p)n

Memoryless property of geometric distribution

P{X > i + j |X > i} =
P{X > i + j ∩X > i}

P{X > i} =
P{X > i + j}

P{X > i}

=
(1− p)i+j

(1− p)i
= P{X > j}

If there have been i unsuccessful trials then the probability that for the first success one needs

still more than j new trials is the same as the probability that in a completely new sequence

of trails one needs more than j trials for the first success.

This is as it should be, since the past trials do not have any effect on the future trials, all of

which are independent.
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Negative binomial distribution X ∼ NBin(n, p)

X is the number of trials needed in a sequence of Bernoulli trials needed for n successes.

If X = i, then among the first (i − 1) trials there must have been n − 1 successes and the

trial i must be a success. Thus,

pi = P{X = i} =


 i− 1

n− 1


pn−1(1− p)i−n · p =


 i− 1

n− 1


pn(1− p)i−n if i ≥ n

0 otherwise

The number of trials for the first success ∼ Geom(p). Similarly, the number of trials needed

from that point on for the next success etc. Thus,

X = X1 + · · · + Xn where Xi ∼ Geom(p) (i.i.d.)

Now, the generating function of the distribution is

G(z) =
( pz

1− (1− p)z

)n The point probabilities given above

can also be deduced from this g.f.

The expectation and the variance are n times those of the geometric distribution

E[X ] =
n

p
V[X ] = n

1− p

p2
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Poisson distribution X ∼ Poisson(a)

X is a non-negative integer-valued random variable with the point probabilities

pi = P{X = i} =
ai

i!
e−a i = 0, 1, . . .

The generating function

G(z) =
∞∑
i=0

piz
i = e−a

∞∑
i=0

(za)i

i!
= e−aeza

G(z) = e(z−1)a

As we saw before, this generating function is obtained as a limiting form of the generating

function of a Bin(n, p) random variable, when the average number of successes is kept fixed,

np = a, and n tends to infinity.

Correspondingly, X ∼ Poisson(λt) represents the number of occurrences of events (e.g. ar-

rivals) in an interval of length t from a Poisson process with intensity λ:

• the probability of an event (‘success’) in a small interval dt is λdt

• the probability of two simultaneous events is O(λdt)

• the number of events in disjoint intervals are independent
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Poisson distribution (continued)

Poisson distribution is obeyed by e.g.

• The number of arriving calls in a given interval

• The number of calls in progress in a large (non-blocking) trunk group

Expectation and variance



E[X ] = G′(1) = d
dze

(z−1)a
∣∣∣∣
z=1

= a

E[X2] = G′′(1) + G′(1) = a2 + a ⇒ V[X ] = E[X2]− E[X ]2 = a2 + a− a2 = a

E[X ] = a V[X ] = a
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Properties of Poisson distribution

1. The sum of Poisson random variables is Poisson distributed.
X = X1 + X2, where X1 ∼ Poisson(a1), X2 ∼ Poisson(a2)

⇒ X ∼ Poisson(a1 + a2)

Proof:

GX1(z) = e(z−1)a1, GX2(z) = e(z−1)a2

GX(z) = GX1(z)GX2(z) = e(z−1)a1e(z−1)a2 = e(z−1)(a1+a2)

2. If the number, N , of elements in a set obeys Poisson distribution, N ∼ Poisson(a), and

one makes a random selection with probability p (each element is independently selected

with this probability), then the size of the selected set K ∼ Poisson(pa).

Proof: K obeys the compound distribution

K = X1 + · · · + XN, where N ∼ Poisson(a) and Xi ∼ Bernoulli(p)

GX(z) = (1− p) + pz, GN(z) = e(z−1)a

GK(z) = GN(GX(z)) = e(GX(z)−1)a = e[(1−p)+pz−1]a = e(z−1)pa
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Properties of Poisson distribution (continued)

3. If the elements of a set with size N ∼ Poisson(a)

are randomly assigned to one of two groups 1 and 2

with probabilities p1 and p2 = 1−p1, then the sizes

of the sets 1 and 2, N1 and N2, are independent

and distributed as

N1 ∼ Poisson(p1a), N2 ∼ Poisson(p2a)

N ~ Poisson(a)

p1 p2

N1 N2

Proof: By the law of total probability,

P{N1 = n1, N2 = n2} =
∞∑

n=0
P{N1 = n1, N2 = n2 |N = n}︸ ︷︷ ︸

multinomial distribution

P{N = n}︸ ︷︷ ︸
Poisson distribution

=
n!

n1!n2!
pn1

1 pn2
2 · an

n!
e−a

∣∣∣∣
n=n1+n2

=
pn1

1 pn2
2

n1!n2!
· an1+n2e−a

1︷ ︸︸ ︷
(p1 + p2)

=
(p1a)n1

n1!
e−p1a · (p2a)n2

n2!
e−p2a == P{N1 = n1} · P{N2 = n2}

The joint probability is of product form ⇒ N1 are N2 independent. The factors in the

product are point probabilities of Poisson(p1a) and Poisson(p2a) distributions.

Note, the result can be generalized for any number of sets.
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Method of collective marks (Dantzig)

Thus far the variable z of the generating function has been considered just as a technical

auxiliary variable (‘book keeping variable’).

In the so called method of collective marks one gives a probability interpretation for the

variable z. This enables deriving some results very elegantly by simple reasoning.

Let N = 0, 1, 2, . . . be a non-negative integer-valued random variable and GN(z) its generating

function:

GN(z) =
∞∑

n=0
pnz

n, pn = P{N = n}

Interpretation: Think of N as representing the size

of some set. Mark each of the elements in the set

independently with probability 1− z and leave it

unmarked with probability z. Then GN(z) is the

probability that there is no mark in the whole

set.
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Method of collective marks (continued)

Example: The generating function of a compound distribution

Y = X1 + · · · + XN , where



X1 ∼ X2 ∼ · · · ∼ XN with common g.f. GX(z)

N is a random variable with g.f. GN(z)

GY (z) = P{none of the elements of Y is marked}
= GN( GX(z)︸ ︷︷ ︸

prob. that a single

subset is unmarked

)

︸ ︷︷ ︸
prob. that none of the sub-

sets is marked

X1

XN
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Method of probability shift: approx. calculation of point probs.

Many distributions (with large mean) can reasonably ap-

proximated by a normal distribution.

Example Poisson(a) ≈ N(a, a), when a � 1

• The approximation is usually good near the mean, but

far away in the tail of the distribution the relative error

can be (and usually is) significant.

m i

m i

• The approximation can markedly be improved by the probability shift method.

• This provides a means to calculate a given point probability (in the tail) of a distribution

whose generating function is known.
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Probability shift (continued)

The problem is to calculate for the random variable X the

point probability

pi = P{X = i} , when i � E[X ] (= m)

In the probability shift method, one considers the (shifted)

random variable X ′ with the point probabilities

p′i =
piz

i

G(z)
These form a normed distribution, because G(z) =

∑
i piz

i.

m i

m i

The moments of the shifted distribution are


m′(z) = E[X ′] =
1

G(z)
z

d

dz
G(z)

E[X ′2] =
1

G(z)
(z

d

dz
)2G(z)

σ′2(z) = V[X ′] = E[X ′2]− E[X ′]2
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Probability shift (continued)

In particular, choose the shift parameter z = z∗ such that m′(z∗) = i, i.e. so that the mean

of the shifted distribution is at the point of interest i. By applying the normal approximation

to the shifted distribution, one obtains

p′i ≈
1√

2πσ′2

Conversely, by solving pi from the previous relation one gets the desired approximation

pi ≈ G(z∗)
(z∗)i

√
2πσ′2(z∗)

where z∗ satisfies the

equation m′(z∗) = i

In order to evaluate this expression one only needs to know the generating function of X .

The method is very useful when X is the sum of several independent random variables with

different distributions, all of which (along with the corresponding generating function) are

known.

The distribution of X is then complex (manyfold convolution), but as its generating function

is known (the product of the respective generating functions) the above method is applicable.
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Probability shift (continued)

Example (nonsensical as no approximation is really needed)

Poisson distribution

pi =
ai

i!
e−a, G(z) = e(z−1)a

p′i =
piz

i

G(z)
=

(az)i

i!
e−az Poisson(za) distribution, so we have immediately the moments

⇒ m′(z) = az, σ′2(z) = az

The solution of the equation m′(z∗) = i is z∗ =
i

a

pi ≈ e(i/a−1)a

(i/a)i
√

2πi
=

ai

√
2πie−iii

e−a

We find that the approximation gives almost exactly the correct Poisson probability but in

the denominator the factorial i! has been replaced by the well known Stirling approximation

i! ≈ √
2πie−iii.


