J. Virtamo Traffic theory and traffic management / Markov processes 1

Markov processes (Continuous time Markov chains)

Consider (stationary) Markov processes with a continuous parameter space (the parameter
usually being time). Transitions from one state to another can occur at any instant of time.

e Due to the Markov property, the time the system spends in any given state is memoryless:
the distribution of the remaining time depends solely on the state but not on the time
already spent in the state = the time is exponentially distributed.

A Markov process X is completely determined by the so called generator matrix or transition rate matrix

T P{XHAt:j’Xt:i} - :
Gij = Aly_g@ At L #

- probability per time unit that the system makes a transition from state ¢ to state j

- transition rate or transition intensity

The total transition rate out of state ¢ is
4 = %é:i i, | lifetime of the state ~ Exp(q;)

This is the rate at which the probability of state ¢ decreases. Define
Qii = —4i
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Transition rate matrix and time dependent state probability vector

The transition rate matrix in full is

Q.0 o1 --- —q0 Qo1 --- row sums equal zero:
Q=|qo @1 ---|=|qo —¢@a .. the probability mass flowing out of state ¢
: S : : will go to some other states (is conserved)

State probability vector 7r(¢) is now a function of time evolving as follows

Cr(t) = (1) Q| = mlt+ Al) = w(t) + (1) QAL+ 0(A) = w(t)(I+ QA + o At)

Transition probability matrix over time interval At is T4+ Q At
- tends to the identity matrix I as At — 0

- Q is the time derivative of the transition probability matrix (transition rate matrix)

A formal solution to the time dependent state probability vector is

The matrix exponent function e® can be defined

- by means of a power series: e* =T+ A + %AZ 4.

w(t) = mw(0) - Q! - by means of eigenvalues and vectors: Au; = zu! and v,A =

ZiVi

= A=) ziu;-rvi and e =% eziuiTVZ-
i i
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Global balance conditions

The stationary solution 7 = limy; ., (%) is independent of time and thus satisfies

- Q=0

Global balance condition which expresses the balance of probability flows.
The 5 row is

qj T = > TiGij

~—

i#]
> Qi
i#]

m,q;, = probability flow from state 7 to state 7
> Tiqji = § Tidi,j g P Y J
i#]

i#] (transition frequency from state i to state j)

virrat ulos = virrat sisaan
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Global balance conditions (continued)

e The equations are linearly dependent: any given equation is automatically satisfied if the
other ones are satisfied (“conservation of probability”).

e The solution is unique up to a constant factor.
e The solution is uniquely determined by the normalization condition.

m-el =1 or %:szl

e 7 is the (left) eigenvector belonging to the eigenvalue 0.

Global balance condition applies also to any set of states.

In stationarity, the probability flows between two sets constituting a partition of the state
space are in balance: Let 2 and €2 be the complementary sets of the partition. Then

Q N Q
g
— — A
Y. Qi = > TG 1
€Q,5€0 €Q,5€0
Y Y T
‘\i_/
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Solving the balance equations

In the same way as in the case of a Markov chain the solution to the (homogeneous) balance
equation

- Q=0

satisfying the normalization condition 7 - e' = 1, is expediently obtained by writing n + 1
copies of the normalization condition

w-E=e

where E is an (n + 1) X (n 4 1) matrix with all elements equal to one, E = ( - ) ,

11 ... 1

by summing the equations, 7 - (Q+ E) = e, and by solving the inhomogeneous equation thus
obtained

T=e (Q+E)"!
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Embedded Markov chain

With every continuous time Markov process X; we can associate a discrete time Markov chain,
so called embedded Markov chain or jump chain X ().

e Focus is on the transitions of X; (when they occur), i.e. on the sequence of (different)
states visited by X;.

e Let the state transitions of X; occur at instants tg, 1, ...

e Define X7(f> to be the value of X; immediately after the transition at time ¢, (at the
instant ¢") or the value of Xy in (t,,t,41).

v _ x Since X, is a Markov process, the embedded chain
no— X7(f> constitutes a Markov chain.
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Embedded Markov chain (continued)

The states of a Markov process can be classified by the classification provided by the embedded
Markov chain (transient, absorbing, recurrent,. . . ).

The transition probabilities of the embedded chain
Dij = Al;ltr_l}o P{Xiiar = 7| Xevar # 4, Xy = i}

i P{Xiint = J, Xoxne #1| Xy =i}
At—0 P{Xiiat # i Xy = 1}

dij i#j of P{min(Xy,...,X,) = X;} = v, when X; ~ Exp(\;)

_ Z] q@J _ >\1+"'+>\n7
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Markov process, transition rates g, Embedded Markov chain, transition probabilities p; ;
()

equilibrium probabilities ; equilibrium probabilities 7,
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Equilibrium probabilities of the embedded Markov chain

. E[T} @
T = (0 And '

> m; E[T}]

J

T

g,

- Y
J

ETi] = 1/q, G = > Gi
J

m; = proportion of time that the X; spends in state i (weight E[T;])

()

T = relative frequency with which state i occurs in the jump chain X (weight 1)

Note 7;¢; is the frequency with which the Markov chain X; makes transitions out of state 7.

In equilibrium, this equals the frequency with which the system jumps into state i.

e Now we have considered the sequence X7(f> of all different states visited by X;

e Sometimes it is possible to pick a subsequence of this chain which again is an embedded

Markov chain.

— later we will base the analysis of so called M /G /1 queue on the consideration of an

appropriately chosen embedded Markov chain (a subsequence of the full jump chain)
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Semi-Markov processes

Conversely, with every Markov chain Z,,, n = 1,2, ... we can associate a continuous time
stochastic process X; by drawing the time T} spent by X; in state ¢ from some distribution

- every time the value is drawn independently
- different states can have different lifetime distributions

and then drawing the new state Z,, according to the state transition probabilities.

The process X; thus obtained is called a semi-Markov process

- generally is not a Markov process
- is a Markov process if and only if T; ~ Exp()\;)

- it has the same stationary distribution as the corresponding Markov process



