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Birth-death processes

General

A birth-death (BD process) process refers to a Markov process with

- a discrete state space

- the states of which can be enumerated with index i=0,1,2,. . . such that

- state transitions can occur only between neighbouring states, i → i + 1 or i → i− 1
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Transition rates

qi,j =




λi when j = i + 1

µi if j = i− 1

0 otherwise

∣∣∣∣∣∣∣∣∣∣∣

probability of death in interval ∆t on λi∆t

probability of birth in interval ∆t on µi∆t

when the system is in state i
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The equilibrium probabilities of a BD process

We use the method of a cut = global balance condition applied on the set of states 0, 1, . . . , k.

In equilibrium the probability flows across the cut are balanced (net flow =0)

λkπk = µk+1πk+1 k = 0, 1, 2, . . .

We obtain the recursion

πk+1 =
λk

µk+1
πk

By means of the recursion, all the state probabilities can be expressed in terms of that of the

state 0, π0,

πk =
λk−1λk−2 · · ·λ0

µkµk−1 · · ·µ1
π0 =

k−1∏
i=0

λi

µi+1
π0

The probability π0 is determined by the normalization condition π0

π0 =
1

1 +
λ0

µ1
+

λ0λ1

µ1µ2
+ · · ·

=
1

1 +
∞∑

k=1

k−1∏
i=0

λi

µi+1
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The time-dependent solution of a BD process

Above we considered the equilibrium distribution π of a BD process.

Sometimes the state probabilities at time 0, π(0), are known

- usually one knows that the system at time 0 is precisely in a given state k; then πk(0) = 1

and πj(0) = 0 when j 6= k

and one wishes to determine how the state probabilities evolve as a function of time π(t)

- in the limit we have limt→∞π(t) = π.

This is determined by the equation

d

dt
π(t) = π(t) ·Q where

Q =




−λ0 λ0 0 . . . . . .

µ1 −(λ1 + µ1) λ1 0 . . .

0 µ2 −(λ2 + µ2) λ2 0
... 0 µ3 −(λ3 + µ3) λ3
... ... 0 µ4 −(λ4 + µ4)
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The time-dependent solution of a BD process (continued)
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The equations component wise



dπi(t)

dt
= −(λi + µi)πi(t)︸ ︷︷ ︸

flows out

+ λi−1πi−1(t) + µi+1πi+1(t)︸ ︷︷ ︸
flows in

i = 1, 2, . . .

dπ0(t)

dt
= −λ0π0(t)︸ ︷︷ ︸

flow out

+ µ1π1(t)︸ ︷︷ ︸
flow in
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Example 1. Pure death process




λi = 0

µi = iµ
i = 0, 1, 2, . . . πi(0) =




1 i = n

0 i 6= n

all individuals have the same

mortality rate µ
the system starts from state n

0

µ
1

2µ
2

3µ
nn-1. . .

(n-1) µ n µ

State 0 is an absorbing state,

other states are transient




d
dt

πn(t) = −nµπn(t) ⇒ πn(t) = e−nµt

d
dt

πi(t) = (i + 1)µπi+1(t)− iµπi(t) i = 0, 1, . . . , n− 1

d
dt

(eiµtπi(t)) = (i + 1)µπi+1(t)e
iµt ⇒ πi(t) = (i + 1)e−iµtµ

∫ t

0
πi+1(t

′)eiµt′dt′

πn−1(t) = ne−(n−1)µtµ
∫ t

0
e−nµt′e(n−1)µt′︸ ︷︷ ︸

e−µt′
dt′ = n e−(n−1)µt(1− e−µt)

Recursively πi(t) =


n

i


(e−µt)i(1− e−µt)n−i

Binomial distribution: the survival

probability at time t is e−µt inde-

pendent of others
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Example 2. Pure birth process (Poisson process)




λi = λ

µi = 0
i = 0, 1, 2, . . . πi(0) =




1 i = 0

0 i > 0

birth probability per time unit is

constant λ

initially the population size is 0

0

λ

1

λ

2

λ

i

λ

i-1

λ
. . .

λ
All states are transient




d
dt πi(t) = −λπi(t) + λπi−1(t) i > 0

d
dt π0(t) = −λπ0(t) ⇒ π0(t) = e−λt

d
dt

(eλtπi(t)) = λπi−1(t)e
λt ⇒ πi(t) = e−λtλ

∫ t

0
πi−1(t

′)eλt′dt′

π1(t) = e−λtλ
∫ t

0
e−λt′eλt′︸ ︷︷ ︸

1

dt′ = e−λt(λt)

Recursively πi(t) =
(λt)i

i!
e−λt Number of births in interval (0, t) ∼ Poisson(λt)
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Example 3. A single server system

0

1

   

∼ Exp( )µ ∼ Exp( )λ

0 1

λ

µ

- constant arrival rate λ (Poisson arrivals)

- stopping rate of the service µ (exponential distribution)

The states of the system


0 server free

1 server busy




d
dt π0(t) = − λπ0(t) + µπ1(t)

d
dt π1(t) = λπ0(t)− µπ1(t)

Q =


−λ λ

µ −µ




BY adding both sides of the equations

d
dt

(π0(t) + π1(t)) = 0 ⇒ π0(t) + π1(t) = constant = 1 ⇒ π1(t) = 1− π0(t)

d
dt

π0(t) + (λ + µ)π0(t) = µ ⇒ d
dt

(e(λ+µ)tπ0(t)) = µe(λ+µ)t

π0(t) = µ
λ+µ

+ (π0(0)− µ
λ+µ

)e−(λ+µ)t

π1(t) = λ
λ+µ

+ (π1(0)− λ
λ+µ

)e−(λ+µ)t

︸ ︷︷ ︸
equilibrium
distribution

︸ ︷︷ ︸
deviation from
the equilibrium

︸ ︷︷ ︸
decays expo-
nentially
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Summary of the analysis on Markov processes

1. Find the state description of the system

• no ready recipe

• often an appropriate description is obvious

• sometimes requires more thinking

• a system may Markovian with respect to one state description but non-Markovian

with respect to another one (the state information is not sufficient)

• finding the state description is the creative part of the problem

2. Determine the state transition rates

• a straight forward task when holding times and interarrival times are exponential

3. Solve the balance equations

• in principle straight forward (solution of a set of linear equations)

• the number of unknowns (number of states) can be very great

• often the special structure of the transition diagram can be exploited
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Global balance

j

i

q i, j

q j, i

n + 1 states

∑
j 6=i

πjqj,i =
∑
j 6=i

πiqi,j
i = 0, 1, . . . , n

one equation per each state︸ ︷︷ ︸
flow to state i

︸ ︷︷ ︸
flow out of
state i

π︷ ︸︸ ︷
(π0, . . . , πn)

Q︷ ︸︸ ︷


−∑
j

q0,j q0,1 q0,2 . . . q0,n

q1,0 −∑
j

q1,j q1,2 . . . q1,n

q2,0 q2,1 −∑
j

q2,j . . . q2,n

... ... ... . . . ...

qn,0 qn,1, qn,2, . . . −∑
j

qn,j




=




0

0

...

0




π ·Q = 0 π0 + π1 + · · · + πn = 1

one equation

is redundant

normalization condition
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Example 1. A queueing system





λ

µ

µ

µ

µ
K odotuspaikkaa

s palvelinta

K=5
s=4




s servers

K waiting places

λ arrival rate (Poisson)

µ Exp(µ) holding time (expectation 1/µ)

The number of customers in system N is an appropriate state variable

- uniquely determines the number of customers in service and in waiting room

- after each arrival and departure the remaining service times

of the customers in service are Exp(µ) distributed (memoryless)

λ λ λ λ λ λ λ λ λ

2µµ 3µ 4µ 4µ 4µ 4µ 4µ 4µ

210 3 4 5 6 7 8 9
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Example 2. Call blocking in an ATM network

A virtual path (VP) of an ATM network is offered calls of two different types.



R1 = 1Mbps

λ1 = arrival rate

µ1 = mean holding time




R2 = 2Mbps

λ2 = arrival rate

µ2 = mean holding time

a) The capacity of the link is large (infinite)

n1

n2

λ1

λ2

λ2

λ1

(n +1)2 2µ

(n +1)1 1µn1 1µ
n2 2µ

The state variable of the Markov process in this example is the pair (N1, N2), where Ni defines

the number of class-i connections in progress.
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Call blocking in an ATM network (continued)

b) The capacity of the link is 4.5 Mbps

n1

n2


