
QUEUEING SYSTEMS

General

- Queueing systems constitute a central tool in modelling and performance analysis of e.g. telecommunication systems and computer systems.
- Describes contention on the resources
 - in queueing systems the resources are called servers
 - in applications, the resources may be trunks, capacity ...
- The "customers" arriving at a queue may be calls, messages, packets, tasks . . .
- Often the systems are complex (for instance communication network, operating system) and contains many queues, which form a network of queues, i.e. a queueing network.
 - in the beginning we focus on systems consisting of a single queue
 - there are many types of queues, giving rise to a rich theory

Example.

Single server queue

Differentiating factors in queueing systems

- Arrival process
 - interarrival times
 - group arrivals
- Service process
 - service times (requested service work)
- Number of servers
- Number of queues
- Number of waiting places
 - division of the waiting room between the queues
- Service discipline
 - FIFO, LIFO
 - shortest jobs first
 - most profitable jobs first

- Scheduling
 - round robin
 - processor sharing
 - priorities
- Information available
 - upon choice of a queue, does one know
 the lengths of queues, the service times of individual customers . . .
- Discrete time (slotted) / continuous time queues
- Other factors (in real life)
 - screening of the customers
 - bribing
 - **—** . . .

The notation of queueing systems (Kendall)

For a unique definition of queueing systems, the following notation is usually used: A/S/m/c/p, where

A / S / m / c / p arrival service number of number of size of customer process process servers system places population

- A and S are substituted by one of the commonly used symbols as the case may be.
- Usually the term queue length refers to the <u>total</u> number of customers in the system (including both waiting customers and those in service).
- \bullet The parameter c includes both waiting places and service places
 - may be omitted from the notation, whence by default its value is infinite
- The size of the customer population s also on optional parameter
 - may be omitted from the notation, whence by default its value is infinite

A (arrival process)

- Defines the type of arrival process
- Often it is thought that the interarrival times are independent (renewal process), whence the process is determined by the type of interarrival distribution.

Commonly used symbols are

M exponential interarrival distribution (M = Markovian, memoryless); Poisson process

D deterministic, constant interarrival times

G general (unspecified)

 E_k Erlang-k distribution

PH phase distribution

Cox Cox distribution

• More abbreviations are introduced as needed.

S (service process)

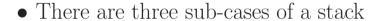
- Defines the distribution of the customer's service time
- The service time is affected by two factors
 - the required work requested by the customer (e.g. the size of a data packet to be sent, kB)
 - the service rate of the server (e.g. kB/s)
 - the service time is the ratio of these
- In Kendall's notation, the type of the service time distribution is indicated by substituting an appropriate symbol for S; commonly the same symbols (M, D, G, etc.) are being used as for defining the type of the interarrival time distribution

Example 1. The queue M/M/1

- Poisson arrival process
- exponential service time distribution
- single server
- unlimited number of waiting places

Example 2. The queue M/M/m/m

- Poisson arrival process
- exponential service time distribution
- m servers and m system places \Rightarrow no waiting room, so called loss system


Queueing discipline / scheduling

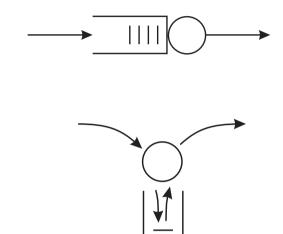
• Ordinary queue, service in the order of arrivals

$$\begin{cases} \frac{FCFS}{FIFO} & \frac{First\ Come\ First\ Served}{First\ In\ First\ Out} \end{cases}$$

• Stack, the latest arrival is being served first

$$\begin{cases} \frac{\text{LIFS}}{\text{LIFO}} & \frac{\text{Last Come First Served}}{\text{Last In First Out}} \end{cases}$$

- pre-emptive resume


the arriving customer pre-empts the ongoing service, which is then resumed when the interrupted customer is again taken into the server, continuing from the same point on as at the time of interruption

- pre-emptive restart

the arriving customer pre-empts the ongoing service; the service is started from the beginning when the interrupted customer is again taken into the server

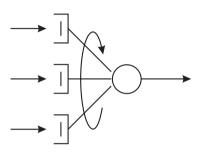
- non-pre-emptive

the arriving customer waits until the ongoing service is finished before being taken into the server

Queueing discipline / scheduling (continued)

• Service in rotating order

RR Round robin


- each customer receives, in turn, a small "time slice" of service
- polling
- Sharing the capacity of the server

PS Processor sharing

- all customers in the queue are receive service simultaneously
- the capacity is shared evenly between the customers (the service rate received by each customer is inversely proportional to the number of customers in the queue)
- an idealized form of RR (the time slices tend to zero)

Other service disciplines are e.g.

- SIRO (Service In Random Order)
- <u>SSF (Shortest Jobs First)</u>: the service time has to be known in advance; this minimizes the mean waiting time

Queueing discipline / scheduling (continued)

- A queueing discipline is called <u>word conserving</u>, if the capacity of the server / servers is not wasted, i.e. no server is idle if there is at least waiting customer in the system.
- Not all disciplines are work conserving, e.g.
 - LCFS / pre-emptive restart
 - systems, where the server can take a "vacation"