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Loss system

Consider a loss system, where the following parameters are given



n = number of trunks (elements which are reserved)

a = the intensity of the offered traffic

There are no waiting places in the system. Calls which upon arrival find all trunks reserved

are blocked and lost.

Question: what is the probability with which an arriving call is blocked?

• Time blocking refers to the proportion of time the system spends in the blocking state

where all n elements are reserved.

• Call blocking is the proportion of the arriving calls which are blocked.

• Traffic blocking is the ratio of the traffic intensity of the blocked traffic to that of the

offered traffic.

All these quantities are equal if

• the arrival process is Poisson

• the service (holding) times of the calls are independent and identically distributed
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Blocking in the M/M/n/n system: Erlang’s formula

Assume that the arrival process of the customers arrive according to a Poisson process with

intensity λ and that the service time obeys the distribution Exp(µ)



λ = the arrival intensity (rate) of the customers

µ = the service rate of the server (the mean service time is 1/µ)

Denote



N = number of elements reserved (number of customers in system)

πj = P{N = j} the equilibrium probability of state j

The state variable Nt constitutes a Markov process of the birth-death type

- the state can change only stepwise
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Erlang’s formula (continued)

The state transition diagram is . . . . . .
0 1 2 j-1 j n-1 nλ λ λ λ

µ 2µ jµ nµ

The balance across the cut leads to the recursion

λπj−1 = jµπj eli πj =
a

j
πj−1 (a = λ/µ = offered traffic intensity)

By repeated application of the recursion one obtains

πj =
aj

j!
π0

From the normalization condition π0+π1 . . .+πn = 1 one can solve π0 = 1/(1 +
a

1!
+

a2

2!
+ . . . +

an

n!
)

πj =

aj

j!

1 +
a

1!
+

a2

2!
+ . . . +

an

n!

- the equilibrium probabilities in the M/M/n/n system

- truncated Poisson distribution

- → aj

j!
e−a, as n →∞
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Erlang’s formula (continued)

The prob. πn of the state n gives the time blocking prob. (= call blocking prob. in this model).

We get the celebrated Erlang’s formula (also called Erlang’s B-formula):

E(n, a) =

an

n!

1 +
a

1!
+

a2

2!
+ . . . +

an

n!

A canonical traffic theoretical relation: it relates the size

of the system n, the offered traffic a and the experienced

quality of service (blocking).

Example.

A modem pool consists of 4 modems and the offered traffic intensity is 2 erl.

What is the probability that a connection attempt is fails due to blocking?

What is the blocking probability, if the number of modems is increased to 6?

Answer: the original blocking probability is 9.5 % and after the increase of the number of

modems it is 1.2 %.

Insensitivity

Erlang’s formula holds more generally independent of the form of the service time distribution.

The blocking depends only on mean holding time 1/µ through the traffic intensity a = λ/µ.
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Graphs for Erlang’s blocking function
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• Horizontal axis: the offered traffic intensity a

• The parameter of the family of curves: the size of the system n

• Vertical axis: blocking probability E(n, a)
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The required capacity as a function of the load

The following table gives the required number of trunks n as a function of the offered traffic

intensity a when the allowed blockin is 1 %. The last column gives the required relative

oversizing n/a, i.e. the ratio of the number of trunks to the load.

a (erl) n n/a

3 8 2.7

10 18 1.8

30 42 1.4

100 117 1.17

300 324 1.08

1000 1029 1.03

• When the traffic intensity a is large the Poisson fluctuations in the occupancy are small

in relative terms, and the required oversizing is small

– for Poisson distribution the standard devaition to mean ratio is
√

a/a = 1/
√

a.

• From the point of view of dimensioning the system it is then (a large) more important

that the value of a on which the dimensioning is based has been correctly estimated and

the uncertainties in it have been properly accounted for.
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Recursion formula

Erlang’s function is given by a simple expression which is easy to evaluate.

Some palnning tools, however, make very frequent calls to this function, possibly in nested

iterative loops. Then it is important to pay attention to the fast computation of the function.

Often the following recursion is advantageous:

E(n, a) =
an

n!
1+ a

1!+
a2
2! +···+an

n!

E(n, a)

E(n− 1, a)
=

an

n!
an−1
(n−1)!

1+ a
1!+

a2
2! +···+ an−1

(n−1)!

1+ a
1!+

a2
2! +···+an

n!
=

a

n
(1−

an

n!

1 + a
1! + a2

2! + · · · + an

n!︸ ︷︷ ︸
E(n,a)

)

E(n, a) =
a

n
E(n− 1, a)(1− E(n, a)) ⇒ E(n, a)(n + aE(n− 1, a)) = aE(n− 1, a)

E(0, a) = 1

E(n, a) =
aE(n− 1, a)

n + aE(n− 1, a)

F (0, a) = 1

F (n, a) = 1 +
n

a
F (n− 1, a)

The latter form has been obtained by writing the recursion for the inverse F (n, a) = 1/E(n, a).

In this recursion, one first computes F (n, a) from which one obtains E(n, a) = 1/F (n, a).
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The insensitivity of the equilibrium distribution

Above we have derived the result that the equilibrium probability distribution is a truncated

Poisson distribution:

πj =

aj

j!

1 +
a

1!
+

a2

2!
+ . . . +

an

n!

j = 0, 1, . . . , n



a = λX̄

λ = Poisson saapumisintensiteetti

X̄ = keskimääräinen pitoaika (1/µ)

The derivation was based on the assumption that the arrival process is Poissonian and that

the holding time obeys exponential distribution.

Remarkably, however, the result holds more generally: the insensitivity result.

The formula for the equilibrium probabilities (and in particular for the blockin prob-

ability πn) is valid for any holding time distribution and depends on the distribution

through the mean holding time X̄ kautta. (Poisson assumption, however, is necessary.)

• The proof of the insensitivity is a non-trivial task in the general case.

• In the following we make considerations by which verify the insensitivity in the cases

n = 1 and n = ∞.
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Insensitivity in the case n = 1 (the M/M/1/1 system)

In the case n = 1 the truncated Poisson distribution reduces to the form

π0 =
1

1 + a
, π1 =

a

1 + a
, where a = λX̄

The insensitivity claim: The state probabilities are valid irresespective of the form of the

holding time distribution.

Proof: The state of the system alternates be-

tween “server busy” and “server idle”.

Consider a full cycle which consists of one re-

served period and one idle period.

0

1

t 
   

jakso

1/λX

_

All cycles are stochastically identical. The probability of the busy/idle state equals the average

proportion of the busy/idle period of the total length the total period.



X̄ = expected duration of a busy period

1/λ = expected duration of an idle period

(the interarrival times are distributed according to Exp(λ); memoryless!)

X̄ + 1/λ = expected duration of the period

π0 =
1/λ

X̄ + 1/λ
=

1

1 + a
, π1 =

X̄

X̄ + 1/λ
=

a

1 + a
Knowledge about the distribution

of X was not needed!
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Insensitivity in the case n = ∞ (the M/M/∞/∞ system)

Now the system is non-blocking. Consid-

er the number of calls in progress at time

0. This is equal to the number of starting

events (before 0) of calls which are still in

progress at time 0. t

Poisson-prosessi, λ

• The call durations X for all calls are independent: tail distribution G(t) = P{X > t}.
• Select all the calls that extend over 0. A call arriving at time t < 0 is selected with the

probability G(−t).

• The arrival process of the selected calls is an inhomogeneous Poisson process with intensity

λ(t) = λ ·G(−t).

• The number of calls in progress at time 0 equals the number of arrivals from the inho-

mogeneous Poisson process in the interval (−∞, 0). The number is ∼ Poisson(a), where

a =
∫ 0

−∞ λ(t)dt.

a =
∫ 0

−∞ λG(−t)dt = λ
∫ ∞
0

G(t)dt = λ
(
/∞0 t G(t)︸ ︷︷ ︸

0

−
∫ ∞
0

G′(t)︸ ︷︷ ︸
−f(t)

t dt
)

= λ
∫ ∞
0

tf(t) dt = λX̄

The number is distributed as Poisson(λX̄) which depends on the holding time only

through the mean X̄.
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The covariance of the occupancy states at two different instants of time in

the M/M/∞/∞ system

Consider the covariance between the values of the occupancy N at two different instants t1
ja t2.

• Calls (customes) arrive with a Poissonian intensity λ.

• The tail distribution of the holding time X is G(x) = P{X > x} (general distribution).

t1 t2 
∆t

Denote


N1 = number of calls at time t1
N2 = number of calls at time t2

We wish to calculate Cov[N1, N2].

• If t1 and t2 are two close instants, one can assume that N1 ≈ N2 and

Cov[N1, N2] ≈ V[N ] = λX̄ = a.

• If t1 and t2 are far apart, N1 and N2 are approximately independent and Cov[N1, N2] ≈ 0.
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Covariance of the occupations (continued)

We split both N1 and N2 into independent components as follows


N1 = K1 + K1,2

N2 = K2 + K1,2

whence the covariance arises only through the common component K1,2,

Cov[N1, N2] = Cov[K1 + K1,2, K2 + K1,2]

= Cov[K1, K2] + Cov[K1, K1,2] + Cov[K1,2, K2] + Cov[K1,2, K1,2]

= Cov[K1,2, K1,2] = V[K1,2]

The component K1: the number of calls which are in progress

at time t1 but not at time t2

- an arrival at t < t1

- condition for the duration X : t1 − t < X < t2 − t

- random selection from a Poisson stream λ in−∞ < t < t1
with the probability G(t1 − t)−G(t2 − t)

t1t t2

X
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Covariance of the occupations (continued)

The component K2: the number of calls which are in progress

at t2 but which start after t1

- arrival at t1 < t < t2

- the condition for the duration X : X > t2 − t

- random selection from a Poisson stream λ in t1 < t < t2
with the probability G(t2 − t)

t1 t t2

X

Component K1,2: the number of calls which are in progress

both at t1 and at t2

- arrival at t < t1

- the condition for the duration X : X > t2 − t

- random selection from a Poisson stream λ in t < t1
with the probability G(t2 − t)

t1t t2

X
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Covariance of the occupations (continued)

The quantities K1, K2 ja K1,2 represent total

number of arrivals from inhomogeneous Poisson

processes, which result from random selection or

random split in the respective intervals.

By the general reults on random selection / random

split, K1, K2 and K1,2 all obey Poisson distributon

and are independent,

t1 t2

λ

λ G(t -t)1 λ G(t -t)2

niiden kutsujen saapumis-
intensiteetti, jotka ovat
käynnissä vielä hetkellä t1

niiden kutsujen saapumis-
intensiteetti, jotka ovat
käynnissä vielä hetkellä t2

t1 t2

λ

a12

a1 a2




K1 ∼ Poisson(a1), a1 = λ
∫ t1

−∞(G(t1 − t)−G(t2 − t))dt

K2 ∼ Poisson(a2), a2 = λ
∫ t2

t1
G(t2 − t)dt

K1,2 ∼ Poisson(a1,2), a1,2 = λ
∫ t1

−∞G(t2 − t)dt

Since V[K1,2] = a1,2 we obtain (change of variable x = t2 − t)

Cov[N1, N2] = λ
∫ ∞
t2−t1

G(t)dt

When t1 = t2, we find that V[N1] = Cov[N1, N1] = λ

0︷ ︸︸ ︷
/∞0 t G(t)−

∫ ∞
0

t

−f(t)︷ ︸︸ ︷
G′(t) dt︷ ︸︸ ︷∫ ∞

0
G(t)dt = λX̄ = a, as should.


