HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory of Telecommunications Technology

S-38.145 Introduction to Teletraffic Theory, Fall 2000

Exercise 10 22.11.2000 Aalto/Nyberg

Note: Problem 3 is a homework exercise. Deliver your answer sheet (labelled with your student id, name, and signature) into the mail box of the course, or directly to the course assistant *before* the next exercise class on 29 November.

- 1. Consider a *symmetric* telephone network with two hierarchial levels. Assume that there are n_1 (higher level 1) areal exchanges completely connected to each other with two-way links (fully meshed topology). What is the total number l_1 of links at this level? Assume further that, for each areal exchange, there are n_2 (lower level 2) local exchanges connected to the areal exchange with two-way links (star topology). What is the total number l_2 of links at this level? All the subscribers are connected to the local exchanges, so that the areal exchanges are just used as transit exchanges.
- 2. Consider the symmetric telephone network defined in problem 1. Let T = T(i, j) denote the traffic matrix, where T(i, j) tells the offered traffic originating from local exchange i and destined to local exchange j. Assume now that

$$T(i,j) = \begin{cases} t_1, & \text{if } i \text{ and } j \ (i \neq j) \text{ are connected to different areal exchanges,} \\ t_2, & \text{if } i \text{ and } j \ (i \neq j) \text{ are connected to the same areal exchange,} \\ t_3, & \text{if } i = j. \end{cases}$$

- a) What is the total offered traffic a generated from the subscribers of any single local exchange?
- b) Assume further that $n_1 = 3$ and $n_2 = 4$. Write down the traffic matrix.
- 3. Homework exercise (deadline 29 November at 9 o'clock): Consider still the symmetric telephone network defined in problems 1 and 2. Assume that $n_1 = 3$, $n_2 = 4$, $t_1 = 1$ erlang, $t_2 = 3$ erlang, and $t_3 = 9$ erlang. Assume further that the shortest path routes are used, and the mean call holding time is h = 3 minutes.
 - a) (Node dimensioning) What is the rate λ_i of call requests arriving at a level-i node, i = 1, 2? Dimension the nodes so that the traffic load $\rho < 0.5$ in all nodes.
 - b) (Link dimensioning) What is the traffic a_i offered to a level-i link, i = 1, 2? Dimension the links so that the call blocking probability $B \leq 1\%$ in all links. (Table on Erl(n, a) function are given on page 2.)

n (channels)	a (erlangs)	
1	0.01	
2	0.15	
3	0.46	
4	0.87	
5	1.36	
6	1.91	
7	2.50	
8	3.13	
9	3.78	
10	4.46	
11	5.16	
12	5.88	
13	6.61	
14	7.35	
15	8.11	
16	8.87	
17	9.65	
18	10.44	
19	11.23	
20	12.03	
21	12.84	
22	13.65	
23	14.47	
24	15.29	
25	16.12	
26	16.96	
27	17.80	
28	18.64	
29	19.49	
30	20.34	

n (channels)	a (erlangs)
31	21.19
$\frac{31}{32}$	22.05
33	$\frac{22.05}{22.91}$
34	$\frac{22.31}{23.77}$
35	24.64
36	25.51
$\frac{37}{37}$	26.38
38	27.25
39	28.13
40	29.01
41	29.89
42	30.77
43	31.66
44	32.54
45	33.43
46	34.32
47	35.21
48	36.11
49	37.00
50	37.90
51	38.80
52	39.70
53	40.60
54	41.50
55	42.41
56	43.31
57	44.22
58	45.13
59	46.04
60	46.95

Table 1: B = Erl(n, a) = 1%