

1. Introduction

lect01.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 2000

1

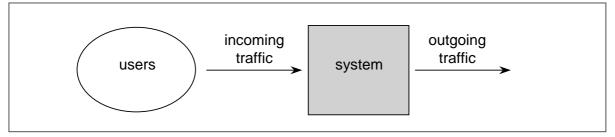
1. Introduction

Contents

- Purpose of Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

Traffic point of view

Telecommunication system from the traffic point of view:



- Ideas:
 - the system serves the incoming traffic
 - the traffic is generated by the **users** of the system

3

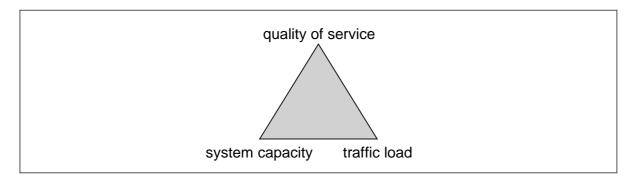
1. Introduction

Interesting questions

- Given the system and incoming traffic, what is the quality of service experienced by the user?
- Given the incoming traffic and required quality of service, how should the system be dimensioned?
- Given the system and required quality of service, what is the maximum traffic load?

General purpose

- Determine **relationships** between the following three factors:
 - quality of service
 - traffic load
 - system capacity

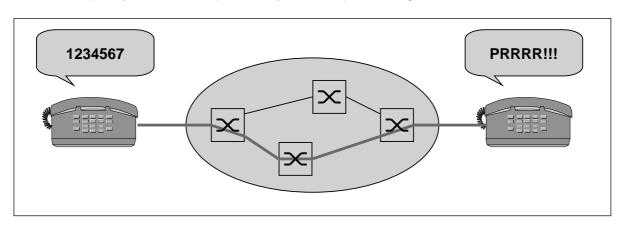


5

1. Introduction

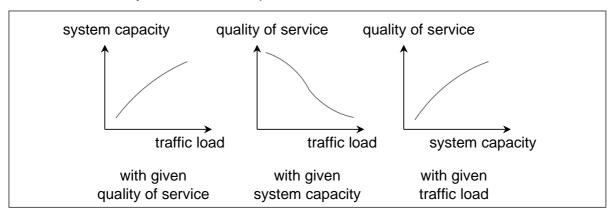
Example

- Telephone call
 - traffic = telephone calls by everybody
 - system = telephone network
 - quality of service = probability that the phone rings at the destination



Relationships between the three factors

Qualitatively, the relationships are as follows:



 To describe the relationships quantitatively, mathematical models are needed

7

1. Introduction

Teletraffic models

- Teletraffic models are **stochastic** (= **probabilistic**)
 - systems themselves are usually deterministic but traffic is typically stochastic
 - "you never know, who calls you and when"
- It follows that the variables in these models are random variables, e.g.
 - number of ongoing calls
 - number of packets in a buffer
- Random variable is described by its distribution, e.g.
 - probability that there are n ongoing calls
 - probability that there are n packets in the buffer
- Stochastic process describes the temporal development of a random variable

Related fields

- Probability Theory
- Stochastic Processes
- Queueing Theory
- Statistical Analysis (traffic measurements)
- Operations Research
- Optimization Theory
- Decision Theory (Markov decision processes)
- Simulation Techniques (object oriented programming)

9

1. Introduction

Difference between the real system and the model

- Typically,
 - the model describes just one part or property of the real system under consideration and even from one point of view
 - the description is not very accurate but rather approximative
- · Thus.
 - caution is needed when conclusions are drawn

Practical goals

- Network planning
 - dimensioning
 - optimization
 - performance analysis
- Network management and control
 - efficient operating
 - fault recovery
 - traffic management
 - routing
 - accounting

11

1. Introduction

Literature

- Teletraffic Theory
 - Teletronikk (1995) Vol. 91, Nr. 2/3, Special Issue on "Teletraffic"
 - S-38.118 course book: "Understanding Telecommunications 1", Ch. 10
 - COST 242, Final report (1996) "Broadband Network Teletraffic", Eds. J. Roberts, U. Mocci, J. Virtamo, Springer
 - J.M. Pitts and J.A. Schormans (1996) "Introduction to ATM Design and Performance", Wiley
- Queueing Theory
 - L. Kleinrock (1975) "Queueing Systems, Volume I: Theory", Wiley
 - L. Kleinrock (1976) "Queueing Systems, Volume II: Computer Applications", Wiley
 - D. Bertsekas and R. Gallager (1992) "Data Networks", 2nd ed., Prentice-Hall
 - P.G. Harrison and N.M. Patel (1993) "Performance Modelling of Communication Networks and Computer Architectures", Addison-Wesley

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

13

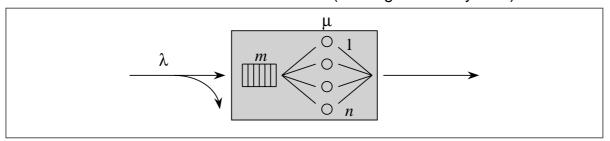
1. Introduction

Teletraffic models

- Two phases in modelling:
 - modelling of the incoming traffic ⇒ traffic model
 - modelling of the system itself ⇒ system model
- Two types of system models:
 - loss systems
 - waiting/queueing systems
- These models can be combined to create models for whole telecommunication networks
 - loss network models
 - queueing network models
- Next we will present a simple teletraffic model
 - describing a single resource

Simple teletraffic model

- Customers arrive at rate λ (customers per time unit)
 - $-1/\lambda$ = average inter-arrival time
- Customers are **served** by *n* parallel **servers**
- When busy, a server serves at rate μ (customers per time unit)
 - $-1/\mu$ = average service time of a customer
- There are m waiting places
- It is assumed that blocked customers (arriving in a full system) are lost

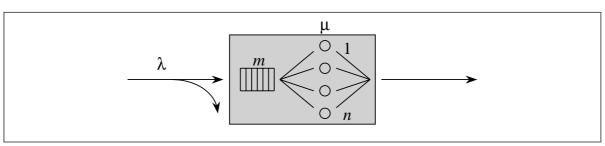


15

1. Introduction

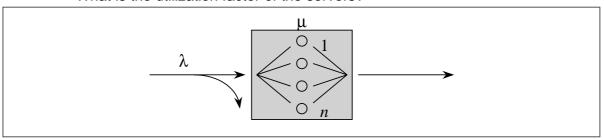
Exercise

- Consider the simple teletraffic model presented above
 - What is the traffic model?
 - What is the system model?



Pure loss system

- No waiting places (m = 0)
 - If the system is full (with all n servers occupied) when a customer arrives,
 she is not served at all but lost
 - Some customers are lost
- From the customer's point of view, it is interesting to know e.g.
 - What is the probability that the system is full when she arrives?
- From the system's point of view, it is interesting to know e.g.
 - What is the utilization factor of the servers?

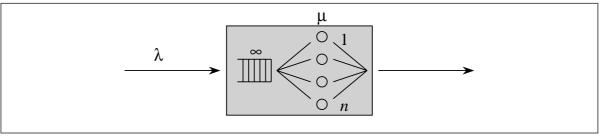


17

1. Introduction

Pure waiting system

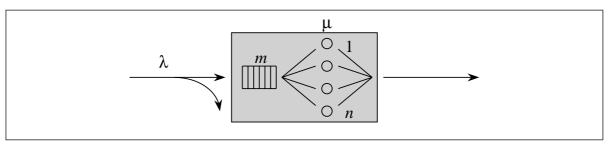
- Infinite number of waiting places $(m = \infty)$
 - If all *n* servers are occupied when a customer arrives, she occupies one of the waiting places
 - No customers are lost but some of them have to wait before getting served
- From the customer's point of view, it is interesting to know e.g.
 - what is the probability that she has to wait "too long"?
- From the system's point of view, it is interesting to know e.g.
 - what is the utilization factor of the servers?



18

Mixed system

- Finite number of waiting places $(0 < m < \infty)$
 - If all n servers are occupied but there are free waiting places when a customer arrives, she occupies one of the waiting places
 - If all n servers and all m waiting places are occupied when a customer arrives, she is not served at all but lost
 - Some customers are lost and some customers have to wait before getting served

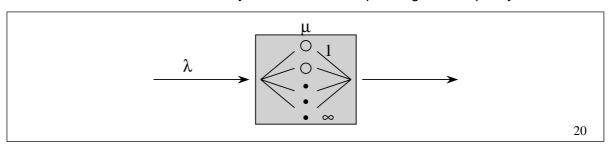


19

1. Introduction

Infinite system

- Infinite number of servers $(n = \infty)$
 - No customers are lost or even have to wait before getting served
- Sometimes,
 - this hypothetical model can be used to get some approximate results for a real system (with finite system capacity)
- Always,
 - it gives bounds for the performance of a real system (with finite system capacity)
 - it is much easier to analyze than the corresponding finite capacity models



Little's formula

- Consider a system where
 - new customers arrive at rate λ
- Assume stability:
 - Every now and then, the system is empty
- Consequence:
 - Customers depart from the system at rate λ
- Let

 \overline{N} = average nr of customers in the system

 \overline{T} = average time a customer spends in the system

• Little's formula:

$$\overline{N} = \lambda \overline{T}$$

21

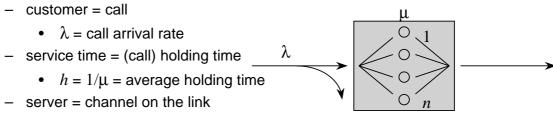
1. Introduction

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

Classical model for telephone traffic

- Loss models have traditionally been used to describe (circuit-switched) telephone networks
 - Pioneering work made by Danish mathematician A.K. Erlang (1878-1929)
- Consider a link between two telephone exchanges
 - traffic consists of the ongoing telephone calls on the link
- Erlang modelled this as a **pure loss system** (m = 0)

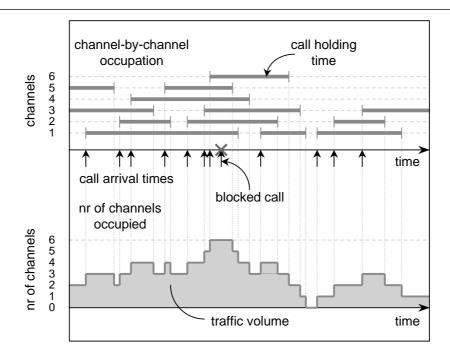


• n = nr of channels on the link

23

1. Introduction

Traffic process



Traffic intensity

In telephone networks:

Traffic ↔ Calls

- The amount of traffic is described by the **traffic intensity** *a*
- By definition, the traffic intensity a is the product of the arrival rate λ and the mean holding time h:

$$a = \lambda h$$

- Note that the traffic intensity is a dimensionless quantity
- Anyway, the unit of the traffic intensity *a* is called **erlang** (**erl**)
 - traffic of one erlang means that,
 on the average, one channel is occupied

25

1. Introduction

Example

- Consider a local exchange. Assume that,
 - on the average, there are 1800 new calls in an hour, and
 - the mean holding time is 3 minutes
- It follows that the traffic intensity is

$$a = 1800 * 3/60 = 90$$
 erlang

If the mean holding time increases from 3 minutes to 10 minutes, then

$$a = 1800 * 10/60 = 300$$
 erlang

Characteristic traffic

 Here are typical characteristic traffics for some subscriber categories (of ordinary telephone users):

private subscriber:
business subscriber:
private branch exchange (PBX):
pay phone:
0.01 - 0.04 erlang
0.03 - 0.06 erlang
0.10 - 0.60 erlang
0.07 erlang

- This means that, for example,
 - a typical private subscriber uses from 1% to 4% of her time in the telephone (during so called "busy hour")
- Referring to the previous example, note that
 - it takes between 2250 9000 private subscribers to generate 90 erlang traffic

27

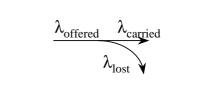
1. Introduction

Blocking

- In a loss system some calls are lost
 - a call is lost if all n channels are occupied when the call arrives
 - the term **blocking** refers to this event
- There are (at least) two different types of blocking quantities:
 - **Call blocking** B_c = probability that an arriving call finds all n channels occupied = the fraction of calls that are lost
 - **Time blocking** $B_{\rm t}$ = probability that all n channels are occupied at an arbitrary time = the fraction of time that all n channels are occupied
- The two blocking quantities are not necessarily equal
 - If calls arrive according to a Poisson process, then $B_c = B_t$
- Call blocking is a better measure for the quality of service experienced by the subscribers but, typically, time blocking is easier to calculate

Call rates

- In a loss system each call is either lost or carried
- Thus, there are three types of call rates:
 - $\lambda_{offered}$ = arrival rate of all call attempts
 - $\lambda_{carried}$ = arrival rate of carried calls
 - $-\lambda_{lost}$ = arrival rate of lost calls
- Note:



$$\lambda_{\text{offered}} = \lambda_{\text{carried}} + \lambda_{\text{lost}} = \lambda$$

$$\lambda_{\text{carried}} = \lambda(1 - B_{\text{c}})$$

$$\lambda_{\text{lost}} = \lambda B_{\text{c}}$$

29

1. Introduction

Traffic streams

- The three call rates lead to the following three traffic concepts:
 - Traffic offered $a_{\mathrm{offered}} = \lambda_{\mathrm{offered}} h$
 - Traffic carried $a_{\text{carried}} = \lambda_{\text{carried}} h$
 - Traffic lost $a_{\text{lost}} = \lambda_{\text{lost}} h$
- Note:

$$a_{\text{offered}} = a_{\text{carried}} + a_{\text{lost}} = a$$
 $a_{\text{carried}} = a(1 - B_{\text{c}})$
 $a_{\text{lost}} = aB_{\text{c}}$

- Traffic offered and traffic lost are hypothetical quantities, but traffic carried is measurable (key: Little's formula):
 - Traffic carried = the average number of occupied channels on the link

Teletraffic analysis

- System capacity
 - n = number of channels on the link
- Traffic load
 - a = (offered) traffic intensity
- Quality of service (from the subscribers' point of view)
 - $-B_{\rm c}$ = probability that an arriving call finds all n channels occupied
- If we assume an **M/G/n/n** loss system, that is
 - calls arrive according to a **Poisson process** (with rate λ)
 - call holding times are independently and identically distributed according to any distribution with mean h
- Then the quantitive relation between the three factors is given by the Erlang's blocking formula

31

1. Introduction

Erlang's blocking formula

$$B_{c} = \operatorname{Erl}(n, a) = \frac{\frac{a^{n}}{n!}}{\sum_{i=0}^{n} \frac{a^{i}}{i!}}$$

- Note: $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$
- · Other names:
 - Erlang's formula
 - Erlang's B-formula
 - Erlang's loss formula
 - Erlang's first formula

Example

• Assume that there are n = 4 channels on a link and the offered traffic is a = 2.0 erlang. Then the call blocking probability B_c is

$$B_{\rm c} = {\rm Erl}(4,2) = \frac{\frac{2^4}{4!}}{1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!}} = \frac{\frac{16}{24}}{1 + 2 + \frac{4}{2} + \frac{8}{6} + \frac{16}{24}} = \frac{2}{21} \approx 9.5\%$$

• If the link capacity is raised to n = 6 channels, then B_c reduces to

$$B_{\rm c} = \text{Erl}(6,2) = \frac{\frac{2^6}{6!}}{1 + 2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} + \frac{2^6}{6!}} \approx 1.2\%$$

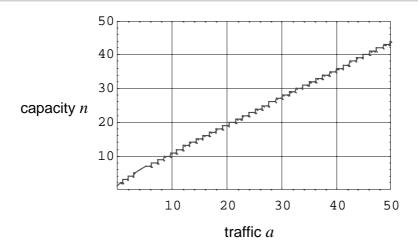
33

1. Introduction

Required capacity vs. traffic

• Given the quality of service requirement that $B_{\rm c} < 20\%$, the required capacity n depends on the traffic intensity a as follows:

$$n(a) = \min\{N = 1, 2, \dots \mid \text{Erl}(N, a) < 0.2\}$$

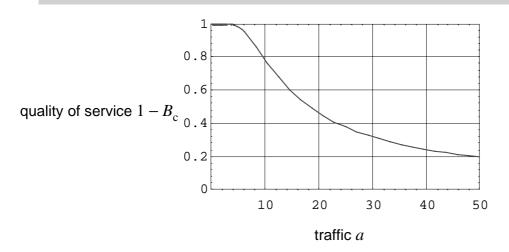


34

Required quality of service vs. traffic

• Given the capacity n=10 channels, the required quality of service $1-B_{\rm c}$ depends on the traffic intensity a as follows:

$$1 - B_{c}(a) = 1 - \text{Erl}(10, a)$$



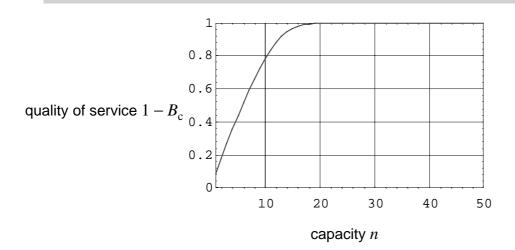
35

1. Introduction

Required quality of service vs. capacity

• Given the traffic intensity a = 10.0 erlang, the required quality of service $1 - B_c$ depends on the capacity n as follows:

$$1 - B_{c}(n) = 1 - \text{Erl}(n, 10.0)$$



36

Contents

- Purpose of the Teletraffic Theory
- Teletraffic models
- Classical model for telephone traffic
- Classical model for data traffic

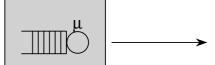
37

1. Introduction

Classical model for data traffic

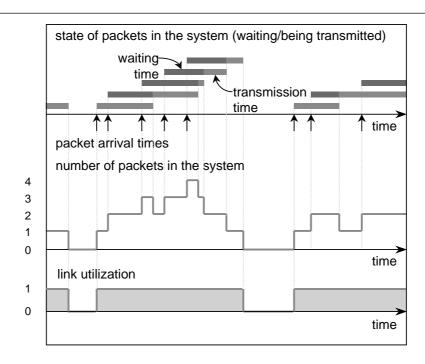
- Queueing models are suitable for describing (packet-switched) data networks
 - Pioneering work made by many people in 60's and 70's (ARPANET)
- Consider a link between two packet routers
 - traffic consists of data packets transmitted on the link
- This can be modelled as a **pure waiting system** with a single server (n = 1) and an infinite buffer $(m = \infty)$
 - customer = packet
 - λ = packet arrival rate

λ



- L = average packet length (data units)
- server = link, waiting places = buffer
 - *R* = link's speed (data units per time unit)
- service time = packet transmission time
 - $1/\mu = L/R$ = average packet transmission time

Traffic process



39

1. Introduction

Traffic load

In packet-switched data networks:

Traffic ↔ Packets

- The amount of traffic is described by the traffic load ρ
- By definition, the traffic load ρ is the quotient between the arrival rate λ and the service rate $\mu=R/L$:

$$\rho = \frac{\lambda}{\mu} = \frac{\lambda L}{R}$$

- Note that the traffic load is a dimensionless quantity
 - It can also be called the traffic intensity (as in loss systems)
 - By Little's formula, it tells the **utilization factor** of the server

Example

- Consider a link between two packet routers. Assume that,
 - on the average, 10 new packets arrive in a second,
 - the mean packet length is 400 bytes, and
 - the link speed is 64 kbps.
- It follows that the traffic load is

$$\rho = 10 * 400 * 8 / 64,000 = 0.5 = 50\%$$

If the link speed is increased to 150 Mbps, then the load is just

$$\rho = 10 * 400 * 8/150,000,000 = 0.0002 = 0.02\%$$

- Note:
 - 1 byte = 8 bits
 - 1 kbps = 1 kbit/s = 1 kbit per second = 1,000 bits per second
 - 1 Mbps = 1 Mbit/s = 1 Mbit per second = 1,000,000 bits per second

41

1. Introduction

Teletraffic analysis

- System capacity
 - R = link speed in kbps
- Traffic load
 - λ = packet arrival rate in packet/s (considered here as a variable)
 - L = average packet length in kbits (assumed here to be constant 1 kbit)
- Quality of service (from the users' point of view)
 - $-P_z$ = probability that a packet has to wait "too long", that is longer than a given reference value z (assumed here to be constant 0.1 s)
- If we assume an M/M/1 queueing system, that is
 - packets arrive according to a Poisson process (with rate λ)
 - packet lengths are independent and identically distributed according to **exponential** distribution with mean ${\cal L}$
- Then the quantitive relation between the three factors is given by the following waiting time formula

Waiting time formula for an M/M/1 queue

$$P_{z} = \operatorname{Wait}(R, \lambda; L, z) = \begin{cases} \frac{\lambda L}{R} \exp(-(\frac{R}{L} - \lambda)z), & \text{if } \lambda L < R \ (\rho < 1) \\ 1, & \text{if } \lambda L \ge R \ (\rho \ge 1) \end{cases}$$

- Note:
 - The system is **stable** only in the former case (ρ < 1)

43

1. Introduction

Example

• Assume that packets arrive at rate $\lambda = 50$ packet/s and the link speed is R = 64 kbps. Then the probability P_z that an arriving packet has to wait too long (i.e. longer than z = 0.1 s) is

$$P_z = \text{Wait}(64,50;1,0.1) = \frac{50}{64} \exp(-1.4)) \approx 19\%$$

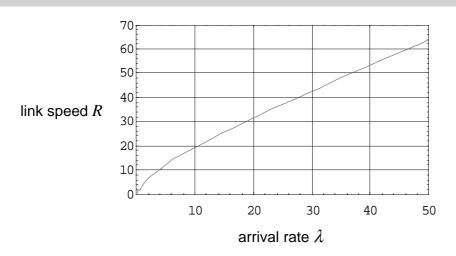
Note that the system is stable, since

$$\rho = \frac{\lambda L}{R} = \frac{50}{64} < 1$$

Required link speed vs. arrival rate

• Given the quality of service requirement that P_z < 20%, the required link speed R depends on the arrival rate λ as follows:

$$R(\lambda) = \min\{r > \lambda L \mid \text{Wait}(r, \lambda; 1, 0.1) < 0.2\}$$



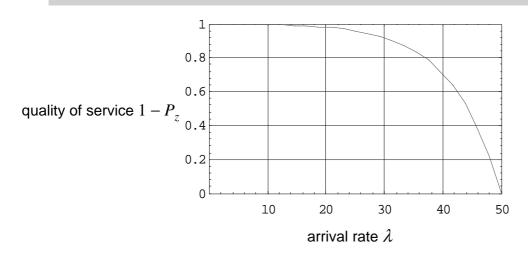
45

1. Introduction

Required quality of service vs. arrival rate

• Given the link speed R=50 kbps, the required quality of service $1-P_z$ depends on the arrival rate λ as follows:

$$1 - P_{\tau}(\lambda) = 1 - \text{Wait}(50, \lambda; 1, 0.1)$$



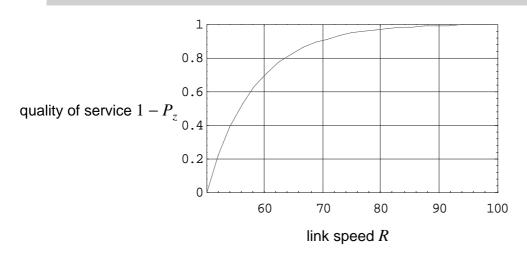
46

1. Introduction

Required quality of service vs. link speed

• Given the arrival rate $\lambda = 50$ packet/s, the required quality of service $1 - P_z$ depends on the link speed R as follows:

$$1 - P_z(R) = 1 - \text{Wait}(R, 50; 1, 0.1)$$



47

1. Introduction

THE END

