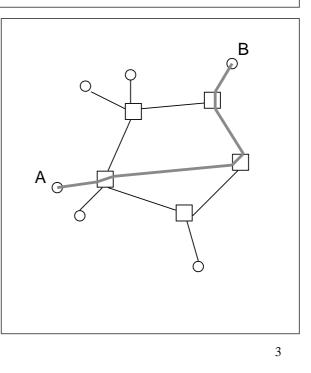
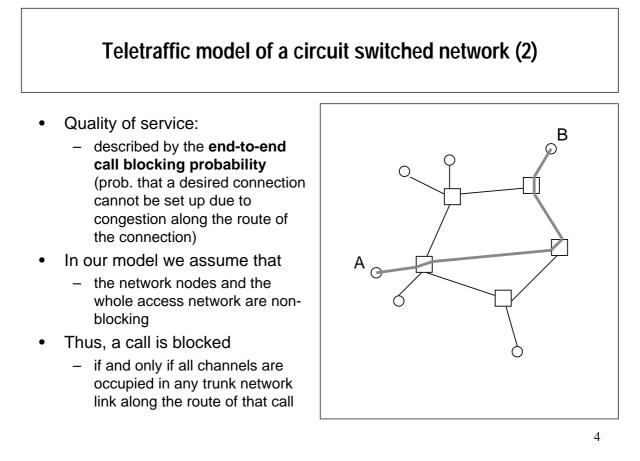
lect03.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 2000

1


3. Modelling of telecommunication systems (part 2)


Contents

- Circuit switched network modelled as a loss network
- Packet switched network modelled as a queueing network

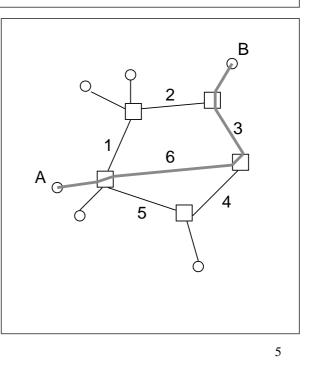
Teletraffic model of a circuit switched network (1)

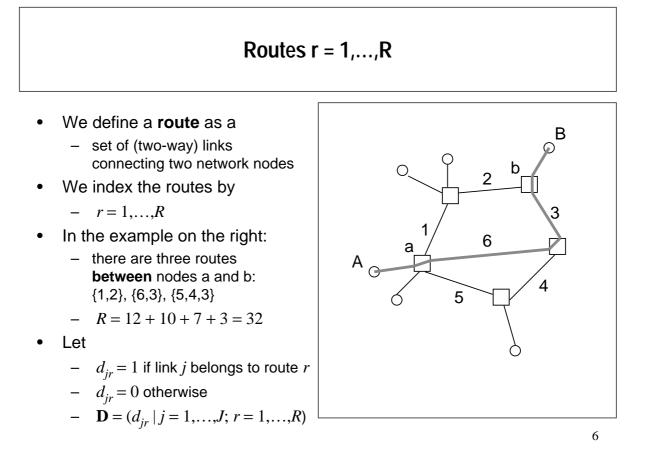
- Consider a circuit switched network
 - e.g. a telephone network
- Traffic:
 - telephone calls
 - each (carried) call occupies one channel on each link among its route
- System:
 - telephone machines (terminals)
 - exchanges (network nodes)
 - access links (from terminals to exchanges)
 - trunks (between exchanges)

Links j = 1,...,J

- In our model,
 all links are two-way (why?)
- We index the links in the trunk network by

- j = 1, ..., J

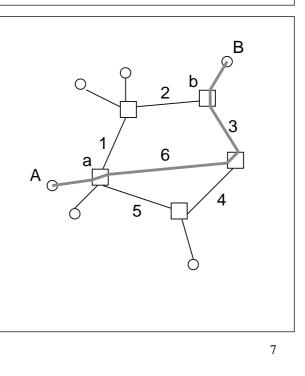

• In the example on the right:


$$-J=6$$

- Let
 - $n_j = \text{nr of channels in link } j$ (that is: the link capacity)

$$- \mathbf{n} = (n_1, \dots, n_J)$$

- Each link is modelled as a
 - pure loss system



Loss network model

- Note:
 - End-to-end call blocking prob. is equal for all the connections following the same route
- Thus,
 - the traffic class of a connection is determined by the route *r* that the connection follows
- Let
 - x_r = number of active connections following route r

 $- \mathbf{x} = (x_1, \dots, x_R)$

- Vector x is called
 - the **state** of the system

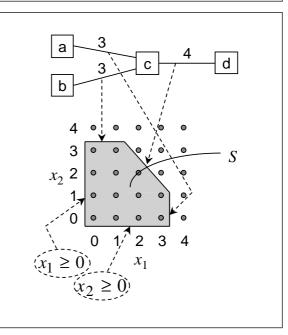
3. Modelling of telecommunication systems (part 2)

• The number of active connections x_r for any traffic class r is limited by the link capacities n_j along the corresponding route r:

$$\sum_{r=1}^{R} d_{jr} x_r \le n_j \quad \text{for all } j$$

• The same in vector form:

 $\mathbf{D} \cdot \mathbf{x} \leq \mathbf{n}$


• Thus, the state space S (that is: the set of admissible states) is

 $S = \{ \mathbf{x} \ge 0 \mid \mathbf{D} \cdot \mathbf{x} \le \mathbf{n} \}$

• Note that, due to finite link capacities, set S is finite

Example

- 3 links with capacities:
 - link a-c: 3 channels
 - link b-c: 3 channels
 - link c-d: 4 channels
- 2 routes:
 - route a-c-d
 - route b-c-d
 - The other 4 routes (which?) are ignored in this model
- State space:
 - $S = \{(0,0), (0,1), (0,2), (0,3), \\(1,0), (1,1), (1,2), (1,3), \\(2,0), (2,1), (2,2), \\(3,0), (3,1)\}$

9

3. Modelling of telecommunication systems (part 2)

Set S_r of non-blocking states for class r

- Consider
 - an arriving call belonging to class *r* (that is: following route *r*)
- It will **not** be blocked by link *j* belonging to route *r*
 - if there is at least one free channel on link *j*:

$$\sum_{i'=1}^{R} d_{jr'} x_{r'} \le n_j - 1 \quad \text{for all } j \in r$$

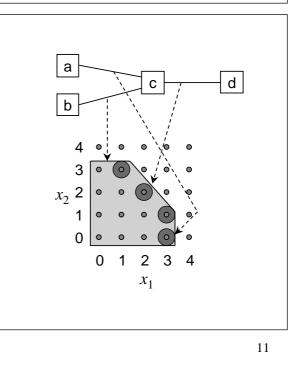
• The same in vector form (\mathbf{e}_r being here the unit vector in direction r):

$$\mathbf{D} \cdot (\mathbf{x} + \mathbf{e}_r) \leq \mathbf{n}$$

The set S_r of non-blocking states is thus

$$S_r = \{\mathbf{x} \ge 0 \mid \mathbf{D} \cdot (\mathbf{x} + \mathbf{e}_r) \le \mathbf{n}\}$$

10


Set S_r^B of blocking states for class r

• The set S_r^B of **blocking** states for class *r* is clearly:

$$S_r^B = S \setminus S_r$$

- Summary:
 - an arriving call of class *r* is blocked (and lost)
 if and only if the state *x* of the system belongs to set *S*^B_r
- Example (continued):
 - The blocking states S₁^B for connections of class 1 (using route a-c-d) are circulated in the figure

$$- S_1^B = \{ (1,3), (2,2), (3,0), (3,1) \}$$

3. Modelling of telecommunication systems (part 2)

Stationary state probabilities (1)

- Assume that
 - new connection requests belonging to traffic class *r* arrive (independently) according to a Poisson process with intensity λ_r
 - call holding times independently and identically distributed with mean h
- Denote
 - $-a_r = \lambda_r h$ (traffic intensity for class *r*)

Stationary state probabilities (2)

• Then it is possible to show that

- the stationary state probability $\pi(\mathbf{x})$ for any state $\mathbf{x} \in S$ is as follows:

$$\pi(\mathbf{x}) = G^{-1} \cdot \prod_{r=1}^{R} f_r(x_r)$$

where G is a normalizing constant:

$$G = \sum_{\mathbf{x} \in S} \prod_{r=1}^{R} f_r(x_r)$$

and the functions $f_r(x_r)$ are defined as follows:

$$f_r(x_r) = \frac{a_r^{x_r}}{x_r!}$$

13

3. Modelling of telecommunication systems (part 2)

Stationary state probabilities (3)

- Probability $\pi(\mathbf{x})$ is said to be of **product-form**
 - However, the number of active connections of different classes are **not** independent (since the normalizing constant *G* depends on each x_r)
 - Only if all the links had infinite capacities, all the traffic classes would be independent of each other
 - Thus, it is the limited resources shared by the traffic classes that makes them dependent on each other

PASTA

- Consider, for a while,
 - any simple teletraffic model (as defined in slide 15 of lecture 1) with Poisson arrivals
- According to so called **PASTA** (Poisson Arrivals See Time Averages) property,
 - arriving calls (obeying a Poisson process) see the system in the stationary state
- This is an important observation
 - applicable in many problems
- For example,
 - it allows us to calculate the end-to-end blocking probabilities in our circuit switched network model (since we assumed that new calls arrive according to a Poisson process)

3. Modelling of telecommunication systems (part 2)

End-to-end call blocking: exact formula

• The probability that the system is (at an arbitrary time) in such a state that it cannot accept any more connections of type *r* (that is: the end-to-end **time blocking** probability for class *r*) is clearly given by the sum

$$\sum_{\mathbf{x}\in S_r^B} \pi(\mathbf{x})$$

• But, due to the PASTA property, the end-to-end **call blocking** probability B_r equals the corresponding end-to-end time blocking probability:

Х

$$B_r = \sum_{\mathbf{x} \in S_r^B} \pi(\mathbf{x})$$

Example

- Consider the example presented in slide 9 (and continued in slide 11)
- The end-to-end blocking probability B_1 for class 1 will be

$$B_{1} = \pi(1,3) + \pi(2,2) + \pi(3,0) + \pi(3,1) = \frac{a_{1}^{1}a_{2}^{3}}{\frac{1}{13!} + \frac{a_{1}^{2}a_{2}^{2}}{\frac{2}{2!2!} + \frac{a_{1}^{3}}{\frac{3}{3!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{1!}}\right)$$

$$\left(1 + \frac{a_{2}^{1}}{\frac{1}{1!} + \frac{a_{2}^{2}}{\frac{2}{2!} + \frac{a_{2}^{3}}{\frac{3}{3!}}}\right) + \frac{a_{1}^{1}}{\frac{1}{1!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{1!} + \frac{a_{2}^{2}}{\frac{2}{2!} + \frac{a_{3}^{3}}{\frac{3}{3!}}}\right) + \frac{a_{1}^{2}}{\frac{1}{2!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{2!} + \frac{a_{2}^{2}}{\frac{2}{2!} + \frac{a_{1}^{3}}{\frac{3}{3!}}}\right) + \frac{a_{1}^{3}}{\frac{1}{3!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{1!} + \frac{a_{2}^{2}}{\frac{2}{2!} + \frac{a_{3}^{3}}{\frac{3}{3!}}}\right) + \frac{a_{1}^{2}}{\frac{1}{2!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{2!} + \frac{a_{2}^{2}}{\frac{2}{2!} + \frac{a_{3}^{3}}{\frac{3}{3!}}}\right) + \frac{a_{1}^{3}}{\frac{1}{3!}} \left(1 + \frac{a_{2}^{1}}{\frac{1}{1!} + \frac{a_{2}^{2}}{\frac{1}{1!} + \frac{a_{2}^{2}}{\frac{2}{1!} + \frac{a_{2}^{2}}{\frac{1}{1!} +$$

17

3. Modelling of telecommunication systems (part 2)

Approximative methods

- In practice,
 - it is extremely hard (even impossible) to apply the exact formula
 - This is due to the so called state space explosion: there are as many dimensions in the state spaces as there are routes in our model
 ⇒ exponential growth of the state space
 - \Rightarrow exponential growth of the state space
- Thus, **approximative** methods are needed
 - Below we will present (the simplest) one of them
- Product Bound method
 - estimate first blocking probabilities in each separate link (common to all traffic classes)
 - calculate then the end-to-end blocking probabilities for each class based on the hypothesis that "blocking occurs independently in each link"

Product Bound (1)

- Consider first the blocking probability B(j) in an arbitrary link j
 - Let R(j) denote the set of routes that use link j
- If the capacities of all the other links (but *j*) were infinite,
 - link *j* could be modelled as a loss system where new calls arrive according to a Poisson process with intensity $\lambda(j)$,

$$\lambda(j) = \sum_{r \in R(j)} \lambda_r$$

- In this case, the blocking probability could be calculated from formula

$$B(j) \approx \operatorname{Erl}(n_j, \sum_{r \in R(j)} a_r)$$

 Note that this is really an approximation, since the traffic offered to link *j* is smaller due to blockings in other links (and not even of Poisson type).

19

3. Modelling of telecommunication systems (part 2)

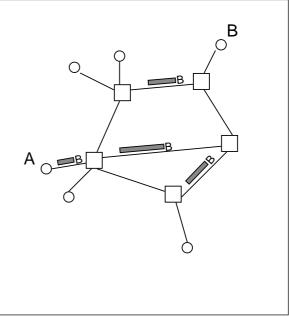
Product Bound (2)

- Consider then the end-to-end call blocking probability B_r for class r
 - Let J(r) denote the set of the links that belong to route r
 - Note that an arriving call of class r will not be blocked, if it is not blocked in any link $j \in J(r)$
- If blocking occured independently in each link,
 - an arriving call of class r would be blocked with probability

$$B_r \approx 1 - \prod_{j \in J(r)} (1 - B(j))$$

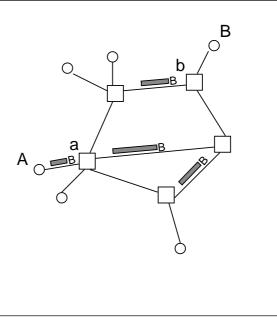
- Note that for (very) small values of B(j)'s, we can use the following approximation:

$$B_r \approx \sum_{j \in J(r)} B(j)$$


Contents

- Circuit switched network modelled as a loss network
- Packet switched network modelled as a queueing network

3. Modelling of telecommunication systems (part 2)


Teletraffic model of a connectionless packet switched network (1)

- Consider a connectionless
 packet switched network
 - e.g. an Internet subnetwork
- Traffic:
 - data packets
 - identified by their source (A) and destination (B)
- System:
 - workstations & servers (terminals)
 - routers (network nodes)
 - access links (from terminals to routers)
 - trunks (between routers)

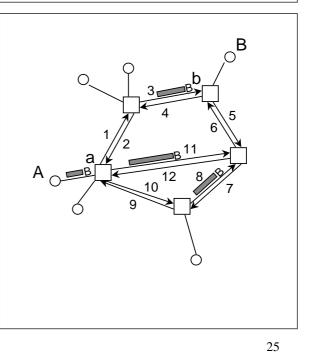
Teletraffic model of a connectionless packet switched network (2)

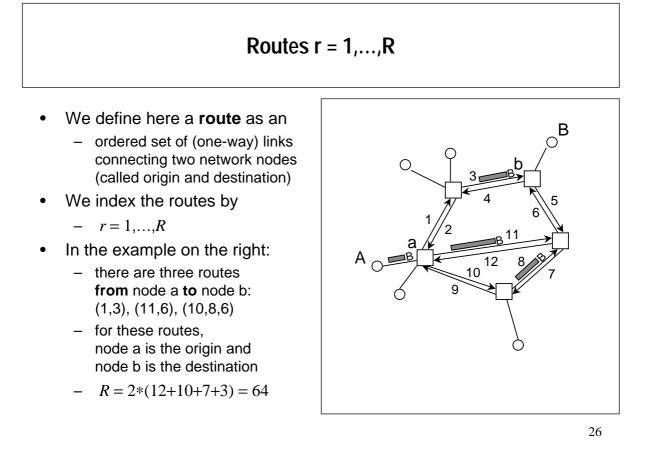
- Quality of service:
 - described by the average endto-end delay (the mean time to get from the source (A) to the destination (B))
- However, in our model
 - we restrict ourselves to the average trunk network delay (the mean time to get from the source router (a) to the destination router (b))
 - implicitly, we assume that the delay due to access network is negligible (or, at least, almost deterministic)

3. Modelling of telecommunication systems (part 2)

Delay components

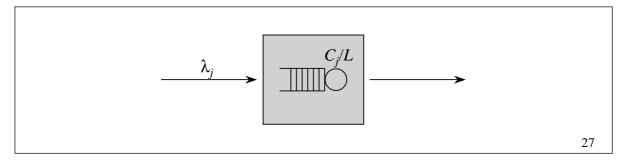
- Trunk network delay consists of
 - propagation delays (in links)
 - transmission delays (in links)
 - processing delays (in nodes)
 - queueing delays (before transmission and before processing)
- Note that
 - propagation and transmission delays are deterministic,
 - processing delays might be random, and
 - queueing delays are surely random
- In our model,
 - we will take into account the transmission and the related queueing delays
 - but we will ignore the propagation delays in links and the delays in nodes (the processing and the related queueing delays)


Links j = 1,...,J


- In this case we separate the directions so that
 - all links are **one-way** (why?)
- We index the links in the trunk network by

$$- j = 1, ..., J$$

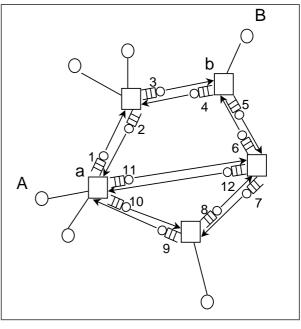
• In the example on the right:


- Let
 - C_i = capacity of link j (in bps)

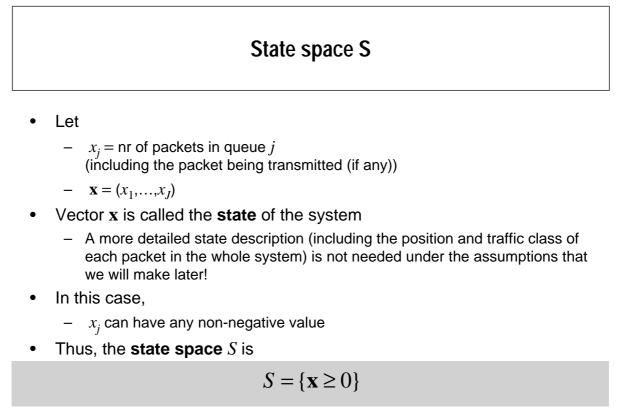
Individual link model

- Each link is modelled as a
 - pure waiting system (with a single server and an infinite buffer)
- Let
 - λ_i = arrival rate of packets to be transmitted on link *j* (in packets/s)
 - L = mean packet length (in bits)
 - $1/\mu_j = L/C_j$ = average packet transmission time on link *j* (in seconds)
- Stability requirement: $\lambda_j < \mu_j$

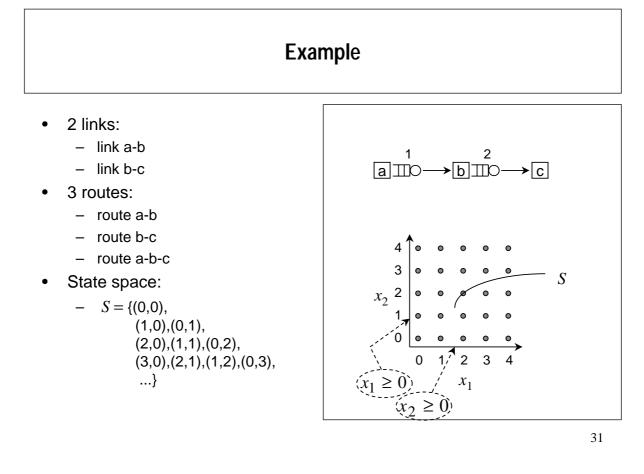
3. Modelling of telecommunication systems (part 2)


Packet arrival rates in links

- Let
 - $\lambda(r)$ = arrival rate of packets following route r
 - R(j) = the set of routes that use link j
- It follows that


$$\lambda_j = \sum_{r \in R(j)} \lambda(r)$$

Queueing network model


- Note:
 - Average end-to-end delay is equal for all the packets following the same route
- Thus,
 - the traffic class of a packet is determined by the route *r* that the connection follows

3. Modelling of telecommunication systems (part 2)

• Note that, set *S* is now **infinite**

3. Modelling of telecommunication systems (part 2)

- Assume that
 - new packets following route *r* arrive (independently) according to a Poisson process with intensity $\lambda(r)$
 - packet lengths are independently and exponentially distributed with mean L
- It follows that
 - new packets to be transmitted on link *j* arrive (independently) according to a Poisson process with intensity λ_i , where

$$\lambda_j = \sum_{r \in R(j)} \lambda(r)$$

- packet transmission times are independently and exponentially distributed with mean $1/\mu_i = L/C_i$

Stationary link state probabilities (2)

- Assume further that
 - the system is **stable**: $\lambda_j < \mu_j$ for all *j*
 - packet length is independently redrawn (from the same distribution) every time the packet moves from one link to another
 - This is so called Kleinrock's independence assumption
- Under these assumptions, it is possible to show that
 - the stationary state probability $\pi(\mathbf{x})$ for any state $\mathbf{x} \in S$ is as follows:

$$\pi(\mathbf{x}) = \prod_{j=1}^{J} (1 - \rho_j) \rho_j^{x_j}$$

where ρ_i denotes the traffic load of link *j*:

$$\rho_j = \frac{\lambda_j}{\mu_j} = \frac{\lambda_j L}{C_j} <$$

33

3. Modelling of telecommunication systems (part 2)

Stationary link state probabilities (3)

- Probability $\pi(\mathbf{x})$ is again said to be of **product-form**
 - Now, the number of packets in different queues are independent (why?)
- Each individual queue j behaves as an M/M/1 queue
 - Number of packets in queue j follows a geometric distribution with mean

$$\overline{X}_j = \frac{\rho_j}{1 - \rho_j}$$

Average trunk network delay

- Consider then the average trunk network delay for class *r*
 - Let J(r) denote the set of the links that belong to route r
- In our model, the average trunk network delay will be
 - the sum of average delays experienced in the links along the route (including **both** the transmission delay **and** the queueing delay)
- By Little's formula, the average link delay is

$$\overline{T}_{j} = \frac{\overline{X}_{j}}{\lambda_{j}} = \frac{1}{\lambda_{j}} \cdot \frac{\rho_{j}}{1 - \rho_{j}} = \frac{1}{\mu_{j} - \lambda_{j}}$$

• Thus, the average trunk network delay for class r is

$$\overline{T}(r) = \sum_{j \in J(r)} \overline{T}_j = \sum_{j \in J(r)} \frac{1}{\mu_j - \lambda_j}$$

35

