3. Modelling of telecommunication systems (part 2)

Contents

- Circuit switched network modelled as a loss network
- Packet switched network modelled as a queueing network

Teletraffic model of a circuit switched network (1)

- Consider a circuit switched network
- e.g. a telephone network
- Traffic:
- telephone calls
- each (carried) call occupies one channel on each link among its route
- System:
- telephone machines (terminals)
- exchanges (network nodes)
- access links (from terminals to exchanges)
- trunks (between exchanges)

3

Teletraffic model of a circuit switched network (2)

- Quality of service:
- described by the end-to-end call blocking probability (prob. that a desired connection cannot be set up due to congestion along the route of the connection)
- In our model we assume that
- the network nodes and the whole access network are nonblocking
- Thus, a call is blocked
- if and only if all channels are occupied in any trunk network link along the route of that call

Links $\mathrm{j}=1, \ldots, \mathrm{~J}$

- In our model,
- all links are two-way (why?)
- We index the links in the trunk network by
$-\quad j=1, \ldots, J$
- In the example on the right:

$$
-\quad J=6
$$

- Let
- $\quad n_{j}=\mathrm{nr}$ of channels in link j (that is: the link capacity)
$-\quad \mathbf{n}=\left(n_{1}, \ldots, n_{J}\right)$
- Each link is modelled as a
- pure loss system

Routes $r=1, \ldots, R$

- We define a route as a
- set of (two-way) links connecting two network nodes
- We index the routes by
- $r=1, \ldots, R$
- In the example on the right:
- there are three routes between nodes a and b :
$\{1,2\},\{6,3\},\{5,4,3\}$
- $\quad R=12+10+7+3=32$
- Let
- $d_{j r}=1$ if link j belongs to route r
- $d_{j r}=0$ otherwise
$-\quad \mathbf{D}=\left(d_{j r} \mid j=1, \ldots, J ; r=1, \ldots, R\right)$

Loss network model

- Note:
- End-to-end call blocking prob. is equal for all the connections following the same route
- Thus,
- the traffic class of a connection is determined by the route r that the connection follows
- Let
$-\quad x_{r}=$ number of active
connections following route r
$-\mathbf{x}=\left(x_{1}, \ldots, x_{R}\right)$
- Vector \mathbf{x} is called
- the state of the system

State space S

- The number of active connections x_{r} for any traffic class r is limited by the link capacities n_{j} along the corresponding route r :

$$
\sum_{r=1}^{R} d_{j r} x_{r} \leq n_{j} \quad \text { for all } j
$$

- The same in vector form:

$$
\mathbf{D} \cdot \mathbf{x} \leq \mathbf{n}
$$

- Thus, the state space S (that is: the set of admissible states) is

$$
S=\{\mathbf{x} \geq 0 \mid \mathbf{D} \cdot \mathbf{x} \leq \mathbf{n}\}
$$

- Note that, due to finite link capacities, set S is finite

Example

- 3 links with capacities:
- link a-c: 3 channels
- link b-c: 3 channels
- link c-d: 4 channels
- 2 routes:
- route a-c-d
- route b-c-d
- The other 4 routes (which?) are ignored in this model
- State space:

$$
\begin{aligned}
-\quad S= & \{(0,0),(0,1),(0,2),(0,3), \\
& (1,0),(1,1),(1,2),(1,3), \\
& (2,0),(2,1),(2,2), \\
& (3,0),(3,1)\}
\end{aligned}
$$

Set S_{r} of non-blocking states for class r

- Consider
- an arriving call belonging to class r (that is: following route r)
- It will not be blocked by link j belonging to route r
- if there is at least one free channel on link j :

$$
\sum_{r^{\prime}=1}^{R} d_{j r^{\prime}} x_{r^{\prime}} \leq n_{j}-1 \text { for all } j \in r
$$

- The same in vector form (\mathbf{e}_{r} being here the unit vector in direction r):

$$
\mathbf{D} \cdot\left(\mathbf{x}+\mathbf{e}_{r}\right) \leq \mathbf{n}
$$

- The set S_{r} of non-blocking states is thus

$$
S_{r}=\left\{\mathbf{x} \geq 0 \mid \mathbf{D} \cdot\left(\mathbf{x}+\mathbf{e}_{r}\right) \leq \mathbf{n}\right\}
$$

Set $S_{r} B$ of blocking states for class r

- The set S_{r}^{B} of blocking states for class r is clearly:

$$
S_{r}^{B}=S \backslash S_{r}
$$

- Summary:
- an arriving call of class r is blocked (and lost) if and only if the state x of the system belongs to set $S_{r}{ }^{B}$
- Example (continued):
- The blocking states $S_{1}{ }^{B}$ for connections of class 1 (using route a-c-d) are circulated in the figure

$-S_{1}{ }^{B}=\{(1,3),(2,2),(3,0),(3,1)\}$

Stationary state probabilities (1)

- Assume that
- new connection requests belonging to traffic class r arrive (independently) according to a Poisson process with intensity λ_{r}
- call holding times independently and identically distributed with mean h
- Denote
- $a_{r}=\lambda_{r} h$ (traffic intensity for class r)

Stationary state probabilities (2)

- Then it is possible to show that
- the stationary state probability $\pi(\mathbf{x})$ for any state $\mathbf{x} \in S$ is as follows:

$$
\pi(\mathbf{x})=G^{-1} \cdot \prod_{r=1}^{R} f_{r}\left(x_{r}\right)
$$

where G is a normalizing constant:

$$
G=\sum_{\mathbf{x} \in S} \prod_{r=1}^{R} f_{r}\left(x_{r}\right)
$$

and the functions $f_{r}\left(x_{r}\right)$ are defined as follows:

$$
f_{r}\left(x_{r}\right)=\frac{a_{r}^{x_{r}}}{x_{r}!}
$$

Stationary state probabilities (3)

- Probability $\pi(\mathbf{x})$ is said to be of product-form
- However, the number of active connections of different classes are not independent (since the normalizing constant G depends on each x_{r})
- Only if all the links had infinite capacities, all the traffic classes would be independent of each other
- Thus, it is the limited resources shared by the traffic classes that makes them dependent on each other

PASTA

- Consider, for a while,
- any simple teletraffic model (as defined in slide 15 of lecture 1) with Poisson arrivals
- According to so called PASTA (Poisson Arrivals See Time Averages) property,
- arriving calls (obeying a Poisson process)
see the system in the stationary state
- This is an important observation
- applicable in many problems
- For example,
- it allows us to calculate the end-to-end blocking probabilities in our circuit switched network model (since we assumed that new calls arrive according to a Poisson process)

End-to-end call blocking: exact formula

- The probability that the system is (at an arbitrary time) in such a state that it cannot accept any more connections of type r (that is: the end-toend time blocking probability for class r) is clearly given by the sum

$$
\sum_{\mathbf{x} \in S_{r}^{B}} \pi(\mathbf{x})
$$

- But, due to the PASTA property, the end-to-end call blocking probability B_{r} equals the corresponding end-to-end time blocking probability:

$$
B_{r}=\sum_{\mathbf{x} \in S_{r}^{B}} \pi(\mathbf{x})
$$

Example

- Consider the example presented in slide 9 (and continued in slide 11)
- The end-to-end blocking probability B_{1} for class 1 will be

$$
\begin{aligned}
& B_{1}=\pi(1,3)+\pi(2,2)+\pi(3,0)+\pi(3,1)= \\
& \frac{a_{1}^{1} a_{2}^{3}}{1!3!}+\frac{a_{1}^{2} a_{2}^{2}}{2!2!}+\frac{a_{1}^{3}}{3!}\left(1+\frac{a_{2}^{1}}{1!}\right) \\
& \left(1+\frac{a_{2}^{1}}{1!}+\frac{a_{2}^{2}}{2!}+\frac{a_{2}^{3}}{3!}\right)+\frac{a_{1}^{1}}{1!}\left(1+\frac{a_{2}^{1}}{1!}+\frac{a_{2}^{2}}{2!}+\frac{a_{2}^{3}}{3!}\right)+\frac{a_{1}^{2}}{2!}\left(1+\frac{a_{2}^{1}}{1!}+\frac{a_{2}^{2}}{2!}\right)+\frac{a_{1}^{3}}{3!}\left(1+\frac{a_{2}^{1}}{1!}\right)
\end{aligned}
$$

Approximative methods

- In practice,
- it is extremely hard (even impossible) to apply the exact formula
- This is due to the so called state space explosion: there are as many dimensions in the state spaces as there are routes in our model
\Rightarrow exponential growth of the state space
- Thus, approximative methods are needed
- Below we will present (the simplest) one of them
- Product Bound method
- estimate first blocking probabilities in each separate link (common to all traffic classes)
- calculate then the end-to-end blocking probabilities for each class based on the hypothesis that "blocking occurs independently in each link"

Product Bound (1)

- Consider first the blocking probability $B(j)$ in an arbitrary link j
- Let $R(j)$ denote the set of routes that use link j
- If the capacities of all the other links (but j) were infinite,
- link j could be modelled as a loss system where new calls arrive according to a Poisson process with intensity $\lambda(j)$,

$$
\lambda(j)=\sum_{r \in R(j)} \lambda_{r}
$$

- In this case, the blocking probability could be calculated from formula

$$
B(j) \approx \operatorname{Erl}\left(n_{j}, \sum_{r \in R(j)} a_{r}\right)
$$

- Note that this is really an approximation, since the traffic offered to link j is smaller due to blockings in other links (and not even of Poisson type).

Product Bound (2)

- Consider then the end-to-end call blocking probability B_{r} for class r
- Let $J(r)$ denote the set of the links that belong to route r
- Note that an arriving call of class r will not be blocked, if it is not blocked in any link $j \in J(r)$
- If blocking occured independently in each link,
- an arriving call of class r would be blocked with probability

$$
B_{r} \approx 1-\prod_{j \in J(r)}(1-B(j))
$$

- Note that for (very) small values of $B(j)$'s, we can use the following approximation:

$$
B_{r} \approx \sum_{j \in J(r)} B(j)
$$

Contents

- Circuit switched network modelled as a loss network
- Packet switched network modelled as a queueing network

Teletraffic model of a connectionless packet switched network (1)

- Consider a connectionless packet switched network
- e.g. an Internet subnetwork
- Traffic:
- data packets
- identified by their source (A) and destination (B)
- System:
- workstations \& servers (terminals)
- routers (network nodes)
- access links (from terminals to routers)
- trunks (between routers)

Teletraffic model of a connectionless packet switched network

- Quality of service:
- described by the average end-to-end delay (the mean time to get from the source (A) to the destination (B))
- However, in our model
- we restrict ourselves to the average trunk network delay (the mean time to get from the source router (a) to the destination router (b))
- implicitly, we assume that the delay due to access network is negligible (or, at least, almost deterministic)

23

Delay components

- Trunk network delay consists of
- propagation delays (in links)
- transmission delays (in links)
- processing delays (in nodes)
- queueing delays (before transmission and before processing)
- Note that
- propagation and transmission delays are deterministic,
- processing delays might be random, and
- queueing delays are surely random
- In our model,
- we will take into account the transmission and the related queueing delays
- but we will ignore the propagation delays in links and the delays in nodes (the processing and the related queueing delays)

Links $\mathrm{j}=1, \ldots, \mathrm{~J}$

- In this case we separate the directions so that
- all links are one-way (why?)
- We index the links in the trunk network by
- $j=1, \ldots, J$
- In the example on the right:
- $\quad J=12$
- Let
$-C_{j}=$ capacity of link j (in bps)

25

Routes $r=1, \ldots, R$

- We define here a route as an
- ordered set of (one-way) links connecting two network nodes (called origin and destination)
- We index the routes by
- $\quad r=1, \ldots, R$
- In the example on the right:
- there are three routes from node a to node b :
$(1,3),(11,6),(10,8,6)$
- for these routes, node a is the origin and node b is the destination
- $\quad R=2 *(12+10+7+3)=64$

Individual link model

- Each link is modelled as a
- pure waiting system (with a single server and an infinite buffer)
- Let
$-\lambda_{j}=$ arrival rate of packets to be transmitted on link j (in packets/s)
- $\quad L=$ mean packet length (in bits)
- $1 / \mu_{j}=L / C_{j}=$ average packet transmission time on link j (in seconds)
- Stability requirement: $\lambda_{j}<\mu_{j}$

Packet arrival rates in links

- Let
- $\quad \lambda(r)=$ arrival rate of packets following route r
- $R(j)=$ the set of routes that use link j
- It follows that

$$
\lambda_{j}=\sum_{r \in R(j)} \lambda(r)
$$

Queueing network model

- Note:
- Average end-to-end delay is equal for all the packets following the same route
- Thus,
- the traffic class of a packet is determined by the route r that the connection follows

State space S

- Let
- $x_{j}=\mathrm{nr}$ of packets in queue j (including the packet being transmitted (if any))
$-\quad \mathbf{x}=\left(x_{1}, \ldots, x_{J}\right)$
- Vector \mathbf{x} is called the state of the system
- A more detailed state description (including the position and traffic class of each packet in the whole system) is not needed under the assumptions that we will make later!
- In this case,
- x_{j} can have any non-negative value
- Thus, the state space S is

$$
S=\{\mathbf{x} \geq 0\}
$$

Example

- 2 links:
- link a-b
- link b-c
- 3 routes:
- route a-b
- route b-c
- route a-b-c
- State space:
- $\quad S=\{(0,0)$,
(1,0),(0,1), (2,0),(1,1),(0,2), (3,0),(2,1),(1,2),(0,3), ...\}

31

Stationary link state probabilities (1)

- Assume that
- new packets following route r arrive (independently) according to a Poisson process with intensity $\lambda(r)$
- packet lengths are independently and exponentially distributed with mean L
- It follows that
- new packets to be transmitted on link j arrive (independently) according to a Poisson process with intensity λ_{j}, where

$$
\lambda_{j}=\sum_{r \in R(j)} \lambda(r)
$$

- packet transmission times are independently and exponentially distributed with mean $1 / \mu_{j}=L / C_{j}$

Stationary link state probabilities (2)

- Assume further that
- the system is stable: $\lambda_{j}<\mu_{j}$ for all j
- packet length is independently redrawn (from the same distribution) every time the packet moves from one link to another
- This is so called Kleinrock's independence assumption
- Under these assumptions, it is possible to show that
- the stationary state probability $\pi(\mathbf{x})$ for any state $\mathbf{x} \in S$ is as follows:

$$
\pi(\mathbf{x})=\prod_{j=1}^{J}\left(1-\rho_{j}\right) \rho_{j}^{x_{j}}
$$

where ρ_{j} denotes the traffic load of link j :

$$
\rho_{j}=\frac{\lambda_{j}}{\mu_{j}}=\frac{\lambda_{j} L}{C_{j}}<1
$$

Stationary link state probabilities (3)

- Probability $\pi(\mathbf{x})$ is again said to be of product-form
- Now, the number of packets in different queues are independent (why?)
- Each individual queue j behaves as an $M / M / 1$ queue
- Number of packets in queue j follows a geometric distribution with mean

$$
\bar{X}_{j}=\frac{\rho_{j}}{1-\rho_{j}}
$$

Average trunk network delay

- Consider then the average trunk network delay for class r
- Let $J(r)$ denote the set of the links that belong to route r
- In our model, the average trunk network delay will be
- the sum of average delays experienced in the links along the route (including both the transmission delay and the queueing delay)
- By Little's formula, the average link delay is

$$
\bar{T}_{j}=\frac{\bar{X}_{j}}{\lambda_{j}}=\frac{1}{\lambda_{j}} \cdot \frac{\rho_{j}}{1-\rho_{j}}=\frac{1}{\mu_{j}-\lambda_{j}}
$$

- Thus, the average trunk network delay for class r is

$$
\bar{T}(r)=\sum_{j \in J(r)} \bar{T}_{j}=\sum_{j \in J(r)} \frac{1}{\mu_{j}-\lambda_{j}}
$$

THE END

