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Sample space, sample points, events

Sample space Q is the set of all possible sample points w [ Q
— Example 0. Tossing a coin: Q = {H, T}
— Example 1. Rolling a die: Q ={1,2,3,4,5,6}
— Example 2. Number of customers in a queue: Q ={0,1,2,...}
— Example 3. Call holding time: Q = {x O O | x> 0}
Events A,B,C,...L1 Q are (measurable) subsets of the sample space Q
— Example 1. Even numbers of a die: A ={2,4,6}
— Example 2. No customers in a queue: A = {0}
— Example 3. Call holding time greater than 3.0 (min): A={x 0 O | x> 3.0}
Denote by  the set of all events A L] J
Sure event : The sample space Q [ 7 itself

Impossible event : The empty set L1 [1J

Combination of events

Union “A or B™: AOB={wOQ|wOAorwlB}
Intersection “A and B AnB={wOQ|wOAandw [ B}
Complement “not A”: AC={w0Q|wlA}
Events A and B are disjoint if

— AnB=0

A set of events { By, B,, ...} is a partition of event A if
- () BjnBj=0Uforalli #]
- (i) ;B =A A




Probability

Probability of event A is denoted by P(A), P(A) U [0,1]

— Probability measure P is thus
a real-valued set function defined on the set of events J, P: § — [0,1]

Properties :
- () o0sPA<1
- (i) P(@=0
- (i) P(Q)=1
- (iv) P(A)=1-P(A)
- (v P(AOB)=P(A) +P(B)-PAn B)
— (vi) Aand B are disjoint 0 P(AO B) =P(A) + P(B)
— (vii) {B} is apartition of AD P(A) = 2, P(B))
— (vii) ADOBO P(A) < P(B)

Conditional probability

Assume that P(B) >0
Definition : The conditional probability  of event A

given that event B occurred is defined as
P(An B)
P(B)

P(A|B) =
It follows that

P(An B)=P(B)P(A|B)=P(A)P(B|A)




Theorem of total probability

Let {B;} be a partition of the sample space Q
It follows that { A n B;} is a partition of event A. Thus (by slide 5)

(vii)
P(A) = 5;P(AnB)

Assume further that P(B;) > O for all i. Then (by slide 6)

P(A)=3%; P(B)P(A[B)

This is the theorem of total probability

Bayes’ theorem

Let {B;} be a partition of the sample space Q
Assume that P(A) >0 and P(B;) > Ofor all i. Then (by slide 6)

|y = P(ANBY) _ P(B)P(AB)
PEIA="pm = e

Furthermore, by the theorem of total probability (slide 7), we get

P(Bi)P(AB)
P(Bi | A) =
BA =5 pis;)Pas))
This is Bayes’ theorem
— Probabilities P(B,) are called a priori probabilities of events B,

— Probabilities P(B, | A) are called a posteriori probabilities of events B,
(given that the event A occured)




Statistical independence of events

Definition : Events A and B are independent if

P(An B) =P(A)P(B)

It follows that

— P(AnB) _ P(A)P(B) _
P(Al B) - P(B) - P(B) - P(A)

Correspondingly:

P(AnB) _ P(A)P(B)

PEIN="pw = pa

= P(B)

Random variables

Definition : Real-valued random variable Xis a real-valued and
measurable function defined on the sample space Q, X: Q - [I

— Each sample point w [1 Q is associated with a real number X(w)
Measurability means that all sets of type

{X<x: HwlQ| X(w)sx 0Q

belong to the set of events J, that is

{X<x} OF

The probability of such an event is denoted by P{ X < X}
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Example

A coin is tossed three times
Sample space:

Q={(wy, @y, w3) | LH, T}, 1=1,2,3;

Let X be the random variable that tells the total number of tails
in these three experiments:

@ |HHH[HHT [HTH|[THH[HTT [ THT [ TTH | TTT

Xw | 0 | 1| 1| 1] 2] 2] 2 3
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Indicators of events

Let A 1 7 be an arbitrary event

Definition : The indicator of event A is a random variable defined as
follows:

A
tale) = % C:)D A
Clearly:
PIa=1=P(A)

P{15 =0} = P(A®) =1- P(A)
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Cumulative distribution function

Definition : The cumulative distribution function (cdf) of a random
variable Xis a function Fy: O — [0,1] defined as follows:

Fx (X)=P{ X <x}

Cdf determines the distribution of the random variable,
— that is: the probabilities P{X [0 B}, where B 0 [0 and {X I B} O J

Properties :
— (i) Fyis non-decreasing

— (it) Fyis continuous from the right Fy(X) '/— 1

— (i) Fy(-)=0 B

- (V) Fy(o)=1 < X

Statistical independence of random variables

Definition : Random variables X and Y are independent if
for all xand y

P{X<XY<y}=P{X<xXP{Y <y}

Definition : Random variables Xy,..., X, are (totally) independent if
for all i and X;

14




Maximum and minimum of independent random variables

Let the random variables X, ..., X,, be independent

Denote: XM := max{Xy,..., X,}. Then

P{XM™<xd =P{X;£X,..., X, <X
=P{ X1} P{ X=X
Denote: X™IN := min{X,..., X} . Then
P(XMN > =P{X; > X,..., X, > %
= P{Xy>%- P{ X >3}
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Discrete random variables

Definition : Set A I [J is called discrete if it is
— finite, A={Xy,..., X}, or
— denumerably infinite, A = { Xy, X,,...}
Definition : Random variable X is discrete if
there is a discrete set Sy U U such that

P{X OSy} =1

It follows that

- P{X=x} 20 forall xS,

- P{X=x} =0 forall xS,
The set Sy is called the value set
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Point probabilities

Let X be a discrete random variable
The distribution of X is determined by the point probabilities  p;,

b =P{X =X} % DSy

Definition : The probability mass function  (pmf) of X is a function
py: O — [0,1] defined as follows:

Op;, X=x0S
P 00:=POX =R =gl | 8 T

Cdfis in this case a step function:

Fx()=P{X<x= ¥ p
X <X




Example

A X A F X
B . LF X L
L s ——t—+ N
Xy Xp XgXg4 X;  Xo XgX4
probability mass function (pmf) cumulative distribution function (cdf)

Sk = {Xq, Xo1 X3, Xg}
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Independence of discrete random variables

» Discrete random variables X and Y are independent if and only if
for all x; [J Sxandyj OSy

PIX=%,Y =yj} =P{X =x}PY =yj}
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Expectation

Definition : The expectation (mean value) of X is defined by

Ux =E[X]= S P X=xX= 3 px(X)x= Zpu

XDSX XDSX

— Note 1: The expectation exists only if 2; p;|X;| < o

— Note 2: If 2, p; X = o0, then we may denote E[X] = c

Properties :

(i) cO0O0O E[cX =cHX]
(i) E[X+Y] =E[X] + E[Y]
(iii) Xand Yindependent [ E[XY] = E[X]E[Y]
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Variance

Definition : The variance of X is defined by

0% = D?[X]:=Var[X]:= E[(X - E[X])?]

Useful formula (prove!):

D?[X] = E[X?] - E[X]?

Properties :

() cO00 DZcX =c?DYX]
(i) Xand Yindependent 0 DX+ Y] =D?X] + DAY]
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Covariance

Definition : The covariance between X and Y is defined by

0%y =Co[ X, Y] := E[(X = E[X])(Y - E[Y])]

Useful formula (prove!):

Cov[X,Y] = E[XY] - E[ X]E[Y]

Properties :

(i) Cov[X,X] =Var[X]

(i) Cov[X)Y] = Cov[Y,X]

(i) Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z]
(iv) X and Yindependent [0 Cov[X)Y] =0
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Other distribution related parameters

Definition : The standard deviation of Xis defined by

oy :=D[X]:=+/D?[X]

Definition : The coefficient of variation of X is defined by

DIX]

Cx = C[X] = E[X]

Definition : The kth moment of X is defined by
K) ._ k
1§ = E[XX]
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Average of IID random variables

Let Xy,..., X,, be independent and identically distributed (IID)
with mean [ and variance 0?2
Denote the average (sample mean) as follows:

- n
Xp=1 3 X
i=1

Then (prove!)
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Law of large numbers (LLN)

Let Xy,..., X,, be independent and identically distributed (IID)
with mean [ and variance 0?2
Weak law of large numbers :foralle>0

P{| Xn-upP e -0
Strong law of large numbers : with probability 1

Xn - U
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Bernoulli distribution

X OBernoull(p), pd(0,1)

— describes a simple random experiment with two possible outcomes:

success (1) and failure (0); cf. coin tossing
— takes value 1 with probability p (and value O with probability 1 — p)
Value set: S, = {0,1}
Point probabilities:

PX=0=1-p, P[X=LF=p

Mean value: E[X] =(1-p)0+pd=p
Second moment: E[X?] = (1 - p)0? + pd2=p
Variance: DYX] = E[X?] - E[X]2=p-p?2=p(1 - p)
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Binomial distribution

X OBin(n, p), n{12,...}, p0d(0,1)

— number of successes in an independent series of simple random
experiments (of Bernoulli type); X=X, + ... + X, (with X; OBernoulli(p))

— N =total number of experiments N |
— P = probability of success in any single experiment (i ): : L -
01 iI(n—i)!
Value set: ={0,1,...,n
. Sx .{ ) ni=nl(n-1)---201
Point probabilities:

P(x =i} = (7)o @~ )
Mean value: E[X] = E[X] + ... + E[X] =np
Variance: D X] = D2[X1] +...+ D2[Xn] =np(1—-p) (independence!)
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Geometric distribution

X OGeon(p), pU(0,))

— number of successes until the first failure in an independent series of simple
random experiments (of Bernoulli type)

— P = probability of success in any single experiment
Value set: S5, ={0,1,...}
Point probabilities:

P{X =i} = p' (L~ p)

Mean value: E[X] =} ip(L-p)=p/(1-p)
Second moment: E[X?] = 3. i%p(1 - p) = 2(p/(1 - p))? + p/(1 - p)
Variance: DY X] = E[X?] — E[X]? = p/(1 - p)?
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Memoryless property

* Geometric distribution has so called memoryless property :
foralli,j 00{0,1,...}

P{X=i+||X=i} =P{X = |}

« Prove! (Tip: Prove first that P{X > i} = pi)
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Minimum of geometric random variables

« Let X; OGeomf,) and X, [1Geomp,) be independent . Then
XM= min{ X, X5} OGeon(p;p,)

and

« Prove! (Tip: See slide 15)
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Poisson distribution

X OPoissorfa), a>0

— limit of binomial distribution as N — oo and p — 0in such a way thatnp - a

Value set: 5, ={0,1,...}
Point probabilities:

P{X =i} =2 ¢

Mean value: E[X] = a
Second moment: E[X(X -1)]=a?0 E[X{ =a’+a
Variance: DY X] = E[X?] - E[X]?=a
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Example

Assume that
— 200subscribers are connected to a local exchange

— each subscriber’s characteristic traffic is 0.01erlang
— subscribers behave independently

Then the number of active calls X [1Bin(200,0.01)
Corresponding Poisson-approximation X = Poisson(2.0)
Point probabilities:

0 1 2 3 4 5

Bin(200,0.01) .1326 .2679 .2693 .1795 .0893

.0]

Poisson(2.0)] .1358 .2701 .2701 .1804 .0902 .0

854

361
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Properties

(1) Sum: Let X; JPoissond,) and X, [1Poissong,) be independent.
Then

X1+ X5 OPoissortay +ay)
(if) Random sample : Let X [JPoissong) denote the number of

elements in a set, and Y denote the size of a random sample of this set
(each element taken independently with probability p). Then

Y Poissotfpa)

(i) Random sorting : Let Xand Y be as in (ii), and Z=X-Y. Then
Y and Z are independent (given that X is unknown) and

Z [1Poissori(1- p)a)
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Continuous random variables

Definition : Random variable X is continuous if
there is an integrable function fy: 0 — [, such that for all x O [

Fx () =P{X=<x= [fx(y)dy

The function fy is called the probability density function  (pdf)
— The set S, where fy >0, is called the value set
Properties:
— (i) P{X=x} =0 forallxO O
— (i) Pla<X<b} =P{as< X<h} =[P f(x) dx
— (i) P{XOA} =], f(x) dx
— (iv) PIXDO O} =" (X dx:jsx fy(x) dx=1

37
Example
A fx(x) A FX(X)
___________________ 1
| | | X | | X
. X% % " MV '
probability density function (pdf) cumulative distribution function (cdf)
Sk =[x, X3
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Expectation and other distribution related parameters

» Definition : The expectation (mean value) of X is defined by

(00)
Ux = E[X]:= i fy (X)xdx
—00
— Note 1: The expectation exists only if [ .* fy(X)|x| dx< co

— Note 2: If [ ,® f, (X)X = 0, then we may denote E[X] = e

— The expectation has the same properties as in the discrete case
(see slide 21)

» The other distribution parameters (variance, covariance,...) are defined
just as in the discrete case

— These parameters have the same properties as in the discrete case
(see slides 22-24)
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Uniform distribution

X OU(a,b), a<b

— continuous counterpart of “rolling a die”
Value set: S, = (a,b)
Probability density function (pdf):

fy (x):=P{X Odx =b_1a, x0(a,b)
Cumulative distribution function (cdf):

Fy (X):=P{X < x} :é%g‘, x(a,b)

Mean value: E[X] = [, /(b — &) dx= (a + b)/2
Second moment: E[X?] =[P x%/(b — @) dx = (a2 + ab + b?)/3
Variance: DY X] = E[X?] - E[X]? = (b - a)¥/12
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Exponential distribution

X OExp(A), A>0

— continuous counterpart of geometric distribution (“failure” prob. = Adt)
Value set: Sy = (0,0)
Probability density function (pdf):

fy (x):=P{X Odx = 1™, x>0
Cumulative distribution function (cdf):
Fy (X):=P{X <X} =1-e™ x>0

Mean value: E[X] = [* AX expEAX) dx= 1/A
Second moment: E[X?] =]y AXZ expEAX) dx = 2/A2
Variance: DYX] = E[X?] — E[X]2 = 1/A\2
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Memoryless property

Exponential distribution has so called memoryless property
for all x,y U (0,0)

P{X>x+y|X>x =P{X >y}

— Prove! (Tip: P{X>x} =e™

Application:
— Assume that the call holding time is exponentially distributed with mean h.

— Consider a call that has already lasted for X minutes.
Due to memoryless property,
this gives no information about the length of the remaining holding time:
it is distributed as the original holding time!

— The expectation for the remaining holding time is always h.
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Minimum of exponential random variables

Let X; EXp(A,) and X, DEXp(A,) be independent . Then
X ™M = min{ Xy, X5} DEXp(A + )

and
A
M+Ar’

P(X™" = X} = | 0{1,2)

Prove! (Tip: See slide 15)

44




Standard normal (Gaussian) distribution

X ON(0,1)
— limit of the “normalized” sum of 11D r.v.s with mean O and variance 1
Value set: Sy = (—,)
Probability density function (pdf):

1,2
fy (X):=P{XOdx =¢(x) :=¢%7Te >

Cumulative distribution function (cdf):

Fx ()= P{X <3} =®(x):=["_4(y)dy

« Mean value: E[X] =0 (symmetric pdf)
Variance: D{X] = 1
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Normal (Gaussian) distribution

X ON(u,0?), w00, 0>0

— if (X—=w)/o ON(0,1)
Value set: Sy = (—,)
Probability density function (pdf):

fy (X):= P{X Odx := Fy '(X) :g¢(";"]
« Cumulative distribution function (c<}f):
oo ol
Fyx (X):=P{X sx}—PL - S =P p
Mean value: E[X] = 1 + oE[(X — p)/a] = 4 (symmetric pdf around L)
« Variance: DX] = 02D{(X - p)/o] = 62
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Properties

(i) Linear transformation : Let X ON(x,0%) and a,3 0 0. Then
Y:=aX + [ ON(au + ,B,azaz)

(i) Sum: Let X; O N(,ul,alz) and X, [ N(,L12,(722) be independent .
Then

X1+ Xo ON(ty + o, 0f +0%)

(iii) Sample mean : Let X, ON(w,02), i = 1,...n, be independent and
identically distributed (11D). Then

- n
Xn=13 X; ON(u, L0
=1

47

Central limit theorem (CLT)

Let Xy,..., X,, be independent and identically distributed (IID)
with mean M and variance 02 (and the third moment)
Central limit theorem :

Lo i.d.
m(xn —-H) - N0

It follows that

Xn = N(,U’%UZ)
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Other random variables

* In addition to discrete and continuous random variables,
there are so called mixed random variables
— containing some discrete as well as continuous portions
— It can be shown that any cdf may be decomposed into a sum of three parts,
namely, a pure jump function, a purely continuous portion and a singular
portion (which rarely occurs in distribution functions of interest)
 Example:

— Waiting time W in an M/M/1 queue has an atom at zero
(P{W =0} =1 - p > 0) but otherwise the distribution is continuous
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5. Basic probability theory

Additional literature available on the web

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability _book/book.html
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THE END
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