

lect06.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 2000

1

6. Introduction to stochastic processes

Contents

- Basic concepts
- Poisson process
- Markov processes
- Birth-death processes

Stochastic processes (1)

- Consider a teletraffic (or any) system
- It typically evolves in time randomly
 - Example 1: the number of occupied channels in a telephone link at time *t* or at the arrival time of the n^{th} customer
 - Example 2: the number of packets in the buffer of a statistical multiplexer at time *t* or at the arrival time of the n^{th} customer
- This kind of evolution is described by a stochastic process
 - At any individual time *t* (or *n*) the system can be described by a random variable
 - Thus, the stochastic process is a collection of random variables

6. Introduction to stochastic processes

Stochastic processes (2)

- **Definition**: A (real-valued) **stochastic process** $X = (X_t | t \in I)$ is a collection of random variables X_t
 - taking values in some (real-valued) set $S, X_t(\omega) \in S$, and
 - indexed by a real-valued (time) parameter $t \in I$.
 - Stochastic processes are also called random processes (or just processes)
- The index set $I \subset \Re$ is called the **parameter space** of the process
- The value set $S \subset \Re$ is called the **state space** of the process
 - Note: Sometimes notation X_t is used to refer to the whole stochastic process (instead of a single random variable)

Stochastic processes (3)

• Each (individual) random variable X_t is a mapping from the sample space Ω into the real values \Re :

$$X_t: \Omega \to \mathfrak{R}, \quad \omega \mapsto X_t(\omega)$$

• Thus, a stochastic process *X* can be seen as a mapping from the sample space Ω into the set of real-valued functions \Re^{I} (with $t \in I$ as an argument):

$$X: \Omega \to \mathfrak{R}^I, \quad \omega \mapsto X(\omega)$$

Each sample point ω ∈ Ω is associated with a real-valued function X(ω). Function X(ω) is called a realization (or a path or a trajectory) of the process.

5

6. Introduction to stochastic processes

Summary

- Given the sample point $\omega \in \Omega$
 - $X(\omega) = (X_t(\omega) \mid t \in I)$ is a real-valued function (of $t \in I$)
- Given the time index $t \in I$,
 - $X_t = (X_t(\omega) \mid \omega \in \Omega)$ is a random variable (as $\omega \in \Omega$)
- Given the sample point $\omega \in \Omega$ and the time index $t \in I$,
 - $X_t(\omega)$ is a real value

Example

- Consider traffic process $X = (X_t | t \in [0,T])$ in a link between two telephone exchanges during some time interval [0,T]
 - X_t denotes the number of occupied channels at time t
- Sample point $\omega \in \Omega$ tells us
 - what is the number X_0 of occupied channels at time 0,
 - what are the remaining holding times of the calls going on at time 0,
 - at what times new calls arrive, and
 - what are the holding times of these new calls.
- From this information, it is possible to construct the realization *X*(ω) of the traffic process *X*
- Note that all the randomness is included in the sample point ω
 - Given the sample point, the realization of the process is just a (deterministic) function of time

6. Introduction to stochastic processes

Categories of stochastic processes

- Reminder:
 - Parameter space: set *I* of indices $t \in I$
 - State space: set *S* of values $X_t(\omega) \in S$
- Categories:
 - Based on the parameter space:
 - Discrete-time processes: parameter space discrete
 - Continuous-time processes: parameter space continuous
 - Based on the state space:
 - Discrete-state processes: state space discrete
 - Continuous-state processes: state space continuous
- In this course we will concentrate on the discrete-state processes (with either a discrete or a continuous parameter space)
 - Typical processes describe the number of customers in a queueing system (the state space being thus $S = \{0, 1, 2, ...\}$)

6. Introduction to stochastic processes

Examples

- Discrete-time, discrete-state processes
 - Example 1: the number of occupied channels in a telephone link at the arrival time of the n^{th} customer, n = 1, 2, ...
 - Example 2: the number of packets in the buffer of a statistical multiplexer at the arrival time of the n^{th} customer, n = 1, 2, ...
- Continuous-time, discrete-state processes
 - Example 3: the number of occupied channels in a telephone link at time t > 0
 - Example 4: the number of packets in the buffer of a statistical multiplexer at time t > 0

Notation

- For a discrete-time process,
 - the parameter space is typically the set of positive integers, $I = \{1, 2, ...\}$
 - Index *t* is then (often) replaced by $n: X_n, X_n(\omega)$
- For a continuous-time process,
 - the parameter space is typically either a finite interval, I = [0, T], or all non-negative real values, $I = [0, \infty)$
 - In this case, index *t* is (often) written not as a subscript but in parentheses:
 X(*t*), *X*(*t*;ω)

6. Introduction to stochastic processes

Distribution

• The **stochastic characterization** of a stochastic process *X* is made by giving **all** possible **finite-dimensional distributions**

$$P\{X_{t_1} \le x_1, \dots, X_{t_n} \le x_n\}$$

where $t_1, ..., t_n \in I, x_1, ..., x_n \in S$ and n = 1, 2, ...

 In general, this is not an easy task because of **dependencies** between the random variables X_t (with different values of time t)

Dependence

• The most simple (but not so interesting) example of a stochastic process is such that all the random variables *X_t* are **independent** of each other. In this case

$$P\{X_{t_1} \le x_1, \dots, X_{t_n} \le x_n\} = P\{X_{t_1} \le x_1\} \cdots P\{X_{t_n} \le x_n\}$$

• The most simple non-trivial example is a Markov process. In this case

$$P\{X_{t_1} \le x_1, \dots, X_{t_n} \le x_n\} = P\{X_{t_1} \le x_1\} \cdot P\{X_{t_2} \le x_2 \mid X_{t_1} \le x_1\} \cdots P\{X_{t_n} \le x_n \mid X_{t_{n-1}} \le x_{n-1}\}$$

- This is related to the so called Markov property:
 - Given the current state (of the process),
 the future (of the process) does not depend on the past (of the process)

13

6. Introduction to stochastic processes

• **Definition**: Stochastic process *X* is **stationary** if all finite-dimensional distributions are invariant to time shifts, that is:

$$P\{X_{t_1+\Delta} \le x_1, \dots, X_{t_n+\Delta} \le x_n\} = P\{X_{t_1} \le x_1, \dots, X_{t_n} \le x_n\}$$

for all Δ , n, t_1 ,..., t_n and x_1 ,..., x_n

• **Consequence**: By choosing n = 1, we see that all (individual) random variables X_t of a stationary process are identically distributed:

$$P\{X_t \le x\} = F(x)$$

for all $t \in I$. This is called the **stationary distribution** of the process.

Stochastic processes in teletraffic theory

- In this course (and, more generally, in teletraffic theory) various stochastic processes are needed to describe
 - the arrivals of customers to the system (arrival process)
 - the state of the system (state process, traffic process)

6. Introduction to stochastic processes

Arrival process

- · An arrival process can be described as
 - a **point process** ($\tau_n | n = 1, 2, ...$) where τ_n tells the arrival time of the n^{th} customer (discrete-time, continuous-state)
 - typically it is assumed that the interarrival times $\tau_n \tau_{n-1}$ are independent and identically distributed (IID) \Rightarrow renewal process
 - then it is sufficient to specify the interarrival time distribution
 - exponential IID interarrival times ⇒ Poisson process
 - a **counter process** $(A(t) | t \ge 0)$ where A(t) tells the number of arrivals up to time *t* (continuous-time, discrete-state)
 - non-decreasing: $A(t+\Delta) \ge A(t)$ for all $t, \Delta \ge 0$
 - thus non-stationary!
 - independent and identically distributed (IID) increments $A(t+\Delta) A(t)$ with Poisson distribution \Rightarrow Poisson process

State process

- In simple cases
 - the state of the system is described just by an integer
 - e.g. the number X(t) of calls or packets at time t
 - This yields a state process that is continuous-time and discrete-state
- In more complicated cases,
 - the state process is e.g. a vector of integers (cf. loss and queueing network models)
- Now it is reasonable to ask whether the state process is stationary
 - Although the state of the system did not follow the stationary distribution at time 0, in many cases state distribution approaches the stationary distribution as *t* tends to ∞

6. Introduction to stochastic processes

	Contents	
•	Basic concepts	-

- Poisson process
- Markov processes
- Birth-death processes

Bernoulli process

- **Definition: Bernoulli process** with success probability p is an infinite series $(X_n | n = 1, 2, ...)$ of independent and identical random experiments of Bernoulli type with success probability p
- · Bernoulli process is clearly discrete-time and discrete-state
 - Parameter space: $I = \{1, 2, ...\}$
 - State space: $S = \{0, 1\}$
- Finite dimensional distributions (note: X_n 's are IID):

$$P\{X_1 = x_1, ..., X_n = x_n\} = P\{X_1 = x_1\} \cdots P\{X_n = x_n\}$$
$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_i x_i} (1-p)^{n-\sum_i x_i}$$

• Bernoulli process is stationary (stationary distribution: Bernoulli(*p*))

19

6. Introduction to stochastic processes

Poisson process (1)

- Definition 1: A point process (τ_n | n = 1,2,...) is a Poisson process with intensity λ if the probability that there is an event during a short time interval (t, t+h] is λh + o(h) independently of the other time intervals
 - τ_n tells the occurrence time of the n^{th} event
 - o(h) refers to any function such that $o(h)/h \rightarrow 0$ as $h \rightarrow 0$
 - new events happen with a constant intensity λ : $(\lambda h + o(h))/h \rightarrow \lambda$
 - Poisson process can be seen as the continuous-time counter-part of a Bernoulli process
- Defined as a point process, Poisson process is discrete-time and continuous-state
 - Parameter space: $I = \{1, 2, ...\}$
 - State space: $S = (0, \infty)$

Poisson process (2)

- Consider the interarrival time $\tau_n \tau_{n-1}$ between two events ($\tau_0 = 0$)
 - Since the intensity that something happens remains constant λ , the interarrival time distribution is clearly memoryless. On the other hand, we know that this is a property of an exponential distribution.
 - Due to the same reason, different interarrival times are also independent
 - This leads to the following (second) characterization of a Poisson process
- **Definition 2**: A point process $(\tau_n | n = 1, 2, ...)$ is a **Poisson process** with **intensity** λ if the interarrival times $\tau_n \tau_{n-1}$ are independent and identically distributed (IID) with joint distribution $\text{Exp}(\lambda)$
 - τ_n tells (again) the occurrence time of the n^{th} event

6. Introduction to stochastic processes

Poisson process (3)

- Consider finally the number of events A(t) during time interval [0,t]
 - In a Bernoulli process, the number of successes in a fixed interval would follow a binomial distribution. As the "time slice" tends to 0, this approaches a Poisson distribution.
 - On the other hand, since the intensity that something happens remains constant λ , the number of events occurring in disjoint time intervals are clearly independent.
 - This leads to the following (third) characterization of a Poisson process
- Definition 3: A counter process (A(t) | t ≥ 0) is a Poisson process with intensity λ if its increments in disjoint intervals are independent and follow a Poisson distribution as follows:

$$A(t + \Delta) - A(t) \sim \text{Poisson}(\lambda \Delta)$$

Poisson process (4)

- Defined as a counter process, Poisson process is continuous-time and discrete-state
 - Parameter space: $I = [0, \infty)$
 - State space: $S = \{0, 1, 2, ...\}$
- One dimensional distribution: $A(t) \sim \text{Poisson}(\lambda t)$
 - $E[A(t)] = \lambda t, D^2[A(t)] = \lambda t$
- Finite dimensional distributions (due to indep. of disjoint intervals):

$$P\{A(t_1) = x_1, ..., A(t_n) = x_n\} =$$

$$P\{A(t_1) = x_1\}P\{A(t_2) - A(t_1) = x_2 - x_1\}\cdots$$

$$P\{A(t_n) - A(t_{n-1}) = x_n - x_{n-1}\}$$

No stationary distribution (but independent and identically distributed increments)

6. Introduction to stochastic processes

Three ways to characterize the Poisson process

• It is possible to show that all three definitions for a Poisson process are, indeed, equivalent

Properties (1)

- **Property 1** (Sum): Let $A_1(t)$ and $A_2(t)$ be two independent Poisson processes with intensities λ_1 and λ_2 . Then the sum (superposition) process $A_1(t) + A_2(t)$ is a Poisson process with intensity $\lambda_1 + \lambda_2$.
- Proof: Consider a short time interval (*t*, *t*+*h*]
 Probability that there are no events in the superposition is

$$(1 - \lambda_1 h + o(h))(1 - \lambda_2 h + o(h)) = 1 - (\lambda_1 + \lambda_2)h + o(h)$$

- On the other hand, the probability that there is exactly one event is

$$\begin{aligned} &(\lambda_1 h + o(h))(1 - \lambda_2 h + o(h)) + (1 - \lambda_1 h + o(h))(\lambda_2 h + o(h)) \\ &= (\lambda_1 + \lambda_2)h + o(h) \end{aligned}$$

0	~
-	\cdot

6. Introduction to stochastic processes

Properties (2)

- Property 2 (Random sampling): Let τ_n be a Poisson process with intensity λ. Denote by σ_n the point process resulting from a random and independent sampling (with probability *p*) of the points of τ_n. Then σ_n is a Poisson process with intensity *p*λ.
- Proof: Consider a short time interval (*t*, *t*+*h*]
 - Probability that there are no events after the random sampling is

$$(1 - \lambda h + o(h)) + (1 - p)(\lambda h + o(h)) = 1 - p\lambda h + o(h)$$

- On the other hand, the probability that there is exactly one event is

$$p(\lambda h + o(h)) = p\lambda h + o(h)$$

Properties (3)

- **Property 3** (**Random sorting**): Let τ_n be a Poisson process with intensity λ . Denote by $\sigma_n^{(1)}$ the point process resulting from a random and independent sampling (with probability p) of the points of τ_n . Denote by $\sigma_n^{(2)}$ the point process resulting from the remaining points. Then $\sigma_n^{(1)}$ and $\sigma_n^{(2)}$ are independent Poisson processes with intensities λp and $\lambda(1 p)$.
- Proof: Due to property 2, it is enough to prove that the resulting two processes are independent.

27

6. Introduction to stochastic processes

Properties (4)

- Property 4 (PASTA): Consider any simple (and stable) teletraffic model with Poisson arrivals. Let X(t) denote the state of system at time t (continuous-time process) and Y_n denote the state of the system seen by the *n*th arriving customer (discrete-time process). Then the stationary distribution of X(t) is the same as the stationary distribution of Y_n.
- Thus, we can say that
 - arriving customers see the system in the stationary state
- PASTA property is only valid for Poisson arrivals
 - Consider e.g. your own PC. Whenever you start a new session, the system is idle. In the continuous time, however, the system is not only idle but also busy (when you use it).

Contents

- Basic concepts
- Poisson process
- Markov processes
- Birth-death processes

29

6. Introduction to stochastic processes

Markov process

- Consider a continuous-time and discrete-state stochastic process X(t)
 - with state space $S = \{0, 1, ..., N\}$ or $S = \{0, 1, ...\}$
- **Definition**: The process *X*(*t*) is a **Markov process** if

$$P\{X(t_{n+1}) = x_{n+1} \mid X(t_1) = x_1, \dots, X(t_n) = x_n\} = P\{X(t_{n+1}) = x_{n+1} \mid X(t_n) = x_n\}$$

for all *n*, $t_1 < ... < t_{n+1}$ and $x_1, ..., x_{n+1}$

- This is called the Markov property
- Given the current state, the future of the process does not depend on its past
- As regards the future of the process, it is important to know the current state (not how the process has evolved to this state)

Example

• Process X(t) with independent increments is always a Markov process:

$$X(t_n) = X(t_{n-1}) + (X(t_n) - X(t_{n-1}))$$

- It follows that Poisson process is a Markov process:
 - according to Definition 3, the increments of a Poisson process are independent

6. Introduction to stochastic processes

Time-homogeneity

• **Definition**: Markov process *X*(*t*) is **time-homogeneous** if

$$P\{X(t + \Delta) = y \mid X(t) = x\} = P\{X(\Delta) = y \mid X(0) = x\}$$

for all $t, \Delta \ge 0$ and $x, y \in S$

• In other words, probabilities $P\{X(t + \Delta) = y \mid X(t) = x\}$ are independent of *t*

State transition rates

- Consider a time-homogeneous Markov process *X*(*t*)
- The state transition rates q_{ij} , where $i, j \in S$, are defined as follows:

$$q_{ij} \coloneqq \lim_{h \downarrow 0} \frac{1}{h} P\{X(h) = j \mid X(0) = i\}$$

• The initial distribution $P\{X(0) = i\}, i \in S$, and the state transition rates q_{ij} together determine the state probabilities $P\{X(t) = i\}, i \in S$, by the Kolmogorov (backwards/forwards) equations

33

6. Introduction to stochastic processes

Exponential holding times

- When in state *i*, the conditional probability that there is a transition from state *i* to state *j* during a short time interval (t, t+h] is $q_{ij}h + o(h)$ independently of the other time intervals
- Let q_i denote the total transition rate out of state *i*, that is:

$$q_i \coloneqq \sum_{j \neq i} q_{ij}$$

- Then, the conditional probability that there is a transition from state *i* to any other state during a short time interval (t, t+h] is $q_ih + o(h)$ independently of the other time intervals
- Thus, the holding time in (any) state i is exponentially distributed with intensity q_i

State transition probabilities

- Let T_i denote the holding time in state i
- It can be seen as the minimum of independent (potential) holding times T_{ij} corresponding to (potential) transitions from state *i* to state *j*:

$$T_i = \min_{j \neq i} T_{ij}$$

- Let then p_{ij} denote the conditional probability that, when in state *i*, there is a transition from state *i* to state *j*
- Since potential holding times T_{ij} are exponentially distributed with intensity q_{ij} , we have (by slide 5.44)

$$T_i \sim \operatorname{Exp}(q_i), \quad p_{ij} = P\{T_i = T_{ij}\} = \frac{q_{ij}}{q_i}$$

35

6. Introduction to stochastic processes

State transition diagram

- A time-homogeneous Markov process can be represented by a state transition diagram, which is a directed graph where
 - nodes correspond to states and
 - one-way links correspond to potential state transitions

link from state *i* to state $j \iff q_{ij} > 0$

• Example: Markov process with three states, $S = \{0,1,2\}$

Irreducibility

- **Definition**: There is a **path** from state *i* to state j ($i \rightarrow j$) if there is a directed path from state *i* to state *j* in the state transition diagram.
- In this case, starting from state *i*, the process visits state *j* with positive probability
- **Definition**: States *i* and *j* **communicate** $(i \leftrightarrow j)$ if $i \rightarrow j$ and $j \rightarrow i$.
- **Definition**: Markov process is **irreducible** if all states $i \in S$ communicate with each other
- Example: The Markov process presented in the previous slide is irreducible

6. Introduction to stochastic processes

Global balance equations, equilibrium distribution

- Consider an irreducible Markov process *X*(*t*)
- Definition: Let π = (π_i | π_i ≥ 0, i ∈ S) be a distribution defined on the state space S, that is:

$$\sum_{i \in S} \pi_i = 1 \tag{N}$$

It is the **equilibrium distribution** of the process if the following **global balance equations** (GBE) are satisfied for each $i \in S$:

$$\sum_{j \neq i} \pi_i q_{ij} = \sum_{j \neq i} \pi_j q_{ji}$$
 (GBE)

- It is possible that no equilibrium distribution exists
- However, if the state space is finite, a unique equilibrium distribution exists
- By choosing the equilibrium distribution (if it exists) as the initial distribution, the Markov process X(t) becomes stationary (with stationary distribution π)

6. Introduction to stochastic processes

Local balance equations

- Consider still an irreducible Markov process X(t). Next we will give sufficient (but not necessary) conditions for the equilibrium distribution.
- Proposition: Let π = (π_i | π_i ≥ 0, i ∈ S) be a distribution defined on the state space S, that is:

$$\sum_{i \in S} \pi_i = 1 \tag{N}$$

If the following **local balance equations** (LBE) are satisfied for each $i, j \in S$:

$$\pi_i q_{ij} = \pi_j q_{ji} \tag{LBE}$$

then π is the equilibrium distribution of the process.

- Proof: (GBE) follows from (LBE) by summing over all $j \neq i$
- In this case the Markov process X(t) is called **reversible** (looking stochastically the same in either direction of time)

Contents

- Basic concepts
- Poisson process
- Markov processes
- Birth-death processes

41

6. Introduction to stochastic processes

Birth-death process

- Consider a continuous-time and discrete-state Markov process X(t)
 - with state space $S = \{0, 1, ..., N\}$ or $S = \{0, 1, ...\}$
- **Definition**: The process *X*(*t*) is a **birth-death process** (BD) if state transitions are possible only between neighbouring states, that is:

$$|i-j| > 1 \implies q_{ii} = 0$$

• In this case, we denote

$$\mu_i \coloneqq q_{i,i-1} \ge 0$$
$$\lambda_i \coloneqq q_{i,i+1} \ge 0$$

- The former is called the **death rate** and the latter the **birth rate**.
- In particular, we define $\mu_0 = 0$ and $\lambda_N = 0$ (if $N < \infty$)

Irreducibility

- Proposition: A birth-death process is irreducible if and only if λ_i > 0 for all i ∈ S\{N} and μ_i > 0 for all i ∈ S\{0}
- State transition diagram of an infinite-state irreducible BD process:

• State transition diagram of a finite-state irreducible BD process:

43

6. Introduction to stochastic processes

Equilibrium distribution (1)

- Consider an irreducible birth-death process X(t)
- Let $\pi = (\pi_i \mid i \in S)$ denote the equilibrium distribution (if it exists)
- Local balance equations (LBE):

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1} \tag{LBE}$$

• Thus we get the following recursive formula:

$$\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i \quad \Rightarrow \quad \pi_i = \pi_0 \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j}$$

• Normalizing condition (N):

$$\sum_{i \in S} \pi_i = \pi_0 \sum_{i \in S} \prod_{j=1}^i \frac{\lambda_{j-1}}{\mu_j} = 1$$
 (N)

Equilibrium distribution (2)

Thus, the equilibrium distribution exists if and only if

$$\sum_{i \in S} \prod_{j=1}^{l} \frac{\lambda_{j-1}}{\mu_j} < \infty$$

• Finite state space: The sum above is always finite, and the equilibrium distribution is

$$\pi_{i} = \pi_{0} \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}}, \quad \pi_{0} = \left(1 + \sum_{i=1}^{N} \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}}\right)$$

• Infinite state space: If the sum above is finite, the equilibrium distribution is

$$\pi_{i} = \pi_{0} \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}}, \quad \pi_{0} = \left(1 + \sum_{i=1}^{\infty} \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_{j}}\right)^{-1}$$
⁴⁵

6. Introduction to stochastic processes

Pure birth process

- Definition: A birth-death process is a pure birth process if μ_i = 0 for all i ∈ S
- State transition diagram of an infinite-state pure birth process:

• State transition diagram of a finite-state pure birth BD process:

$$\underbrace{0} \xrightarrow{\lambda_0} \underbrace{\lambda_1} \xrightarrow{\lambda_1} \underbrace{\lambda_{N-2}} \underbrace{\lambda_{N-1}} \underbrace{\lambda_{N-1}} \underbrace{N}$$

- Example: Poisson process is a pure birth process (with constant birth rate $\lambda_i = \lambda$ for all $i \in S = \{0, 1, ...\}$)
- Note: Pure birth process is never irreducible (nor stationary)!

47

6. Introduction to stochastic processes

	THE END
L	