7. Loss systems

Contents

- Refresher: Simple teletraffic model
- Poisson model (∞ customers, ∞ servers)
- Erlang model (∞ customers, $n<\infty$ servers)
- Binomial model ($k<\infty$ customers, $n=k$ servers)
- Engset model ($k<\infty$ customers, $n<k$ servers)

Simple teletraffic model

- Customers arrive at rate λ (customers per time unit)
- $1 / \lambda=$ average inter-arrival time
- Customers are served by n parallel servers
- When busy, a server serves at rate μ (customers per time unit)
- $1 / \mu=$ average service time of a customer
- There are m waiting places
- It is assumed that blocked customers (arriving in a full system) are lost

Pure loss system

- No waiting places $(m=0)$
- If the system is full (with all n servers occupied) when a customer arrives, she is not served at all but lost
- Some customers are lost
- From the customer's point of view,
- it is interesting to know e.g. the blocking probability
- Note: In addition to the case where the arrival rate λ is constant, we will consider the case where it depends on the state of the system: $\lambda(x)$

Infinite system

- Infinite number of servers $(n=\infty)$
- No customers are lost or even have to wait before getting served
- Note: Also here, in addition to the case where the arrival rate λ is constant, we will consider the case where it depends on the state of the system: $\lambda(x)$

Blocking

- In a loss system some calls are lost
- a call is lost if all n channels are occupied when the call arrives
- the term blocking refers to this event
- There are (at least) two different types of blocking quantities:
- Call blocking $B_{\mathrm{c}}=$ probability that an arriving call finds all n channels occupied $=$ the fraction of calls that are lost
- Time blocking $B_{\mathrm{t}}=$ probability that all n channels are occupied at an arbitrary time $=$ the fraction of time that all n channels are occupied
- The two blocking quantities are not necessarily equal
- If calls arrive according to a Poisson process, then $B_{\mathrm{c}}=B_{\mathrm{t}}$
- Call blocking is a better measure for the quality of service experienced by the subscribers but, typically, time blocking is easier to calculate

Contents

- Refresher: Simple teletraffic model
- Poisson model (∞ customers, ∞ servers)
- Erlang model (∞ customers, $n<\infty$ servers)
- Binomial model ($k<\infty$ customers, $n=k$ servers)
- Engset model ($k<\infty$ customers, $n<k$ servers)

Poisson model (M/M/ ∞)

- Definition: Poisson model is the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- Infinite number of servers ($n=\infty$)
- Service times are IID and exponentially distributed with mean $1 / \mu$
- No waiting places ($m=0$)
- Poisson model:
- Using Kendall's notation, this is an M/M/ ∞ queue
- Infinite system, and, thus, lossless
- Notation:
- $a=\lambda / \mu=$ traffic intensity

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval ($t, t+h$]:
- with prob. $\lambda h+o(h)$,
a new customer arrives (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i \mu h+o(h)$,
a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with an infinite state space $S=\{0,1,2, \ldots\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{align*}
& \pi_{i} \lambda=\pi_{i+1}(i+1) \mu \tag{LBE}\\
& \Rightarrow \quad \pi_{i+1}=\frac{\lambda}{(i+1) \mu} \pi_{i}=\frac{a}{i+1} \pi_{i} \\
& \Rightarrow \quad \pi_{i}=\frac{a^{i}}{i!} \pi_{0}, \quad i=0,1,2, \ldots
\end{align*}
$$

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{\infty} \pi_{i}=\pi_{0} \sum_{i=0}^{\infty} \frac{a^{i}}{i!}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{\infty} \frac{a^{i}}{i!}\right)^{-1}=\left(e^{a}\right)^{-1}=e^{-a}
\end{align*}
$$

Equilibrium distribution (2)

- Thus, the equilibrium distribution is a Poisson distribution:

$$
\begin{aligned}
& X \sim \operatorname{Poisson}(a) \\
& P\{X=i\}=\pi_{i}=\frac{a^{i}}{i!} e^{-a}, \quad i=0,1,2, \ldots \\
& E[X]=a, \quad D^{2}[X]=a
\end{aligned}
$$

- Remark (insensitivity):
- The result is insensitive to the service time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$
- So, instead of the M/M/ ∞ model, we can consider, as well, the more general $\mathrm{M} / \mathrm{G} / \infty$ model

Contents

- Refresher: Simple teletraffic model
- Poisson model (∞ customers, ∞ servers)
- Erlang model (∞ customers, $n<\infty$ servers)
- Binomial model ($k<\infty$ customers, $n=k$ servers)
- Engset model ($k<\infty$ customers, $n<k$ servers)

Erlang model (M/M/n/n)

- Definition: Erlang model is the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- Finite number of servers ($n<\infty$)
- Service times are IID and exponentially distributed with mean $1 / \mu$
- No waiting places $(m=0)$
- Erlang model:
- Using Kendall's notation, this is an $\mathrm{M} / \mathrm{M} / n / n$ queue
- Pure loss system, and, thus, lossy
- Notation:
- $a=\lambda / \mu=$ traffic intensity

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval ($t, t+h$]:
- with prob. $\lambda h+o(h)$, a new customer arrives (state transition $i \rightarrow i+1$)
- with prob. $i \mu h+o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with a finite state space $S=\{0,1,2, \ldots, n\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{aligned}
& \pi_{i} \lambda=\pi_{i+1}(i+1) \mu \\
& \Rightarrow \quad \pi_{i+1}=\frac{\lambda}{(i+1) \mu} \pi_{i}=\frac{a}{i+1} \pi_{i} \\
& \Rightarrow \quad \pi_{i}=\frac{a^{i}}{i!} \pi_{0}, \quad i=0,1, \ldots, n
\end{aligned}
$$

(LBE)

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{n} \pi_{i}=\pi_{0} \sum_{i=0}^{n} \frac{a^{i}}{i!}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{n} \frac{a^{i}}{i!}\right)^{-1}
\end{align*}
$$

7. Loss systems

Equilibrium distribution (2)

- Thus, the equilibrium distribution is a truncated Poisson distribution:

$$
P\{X=i\}=\pi_{i}=\frac{\frac{a^{i}}{i!}}{\sum_{j=0}^{n} \frac{a^{j}}{j!}}, \quad i=0,1, \ldots, n
$$

- Remark (insensitivity):
- The result is insensitive to the service time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$
- So, instead of the M/M/n/n model, we can consider, as well, the more general $\mathrm{M} / \mathrm{G} / n / n$ model

Time blocking

- Time blocking $B_{\mathrm{t}}=$ probability that all n servers are occupied at an arbitrary time $=$ the fraction of time that all n servers are occupied
- For a stationary Markov process, this equals the probability π_{n} of the equilibrium distribution π. Thus,

$$
B_{t}:=P\{X=n\}=\pi_{n}=\frac{\frac{a^{n}}{n!}}{\sum_{j=0}^{n} \frac{a^{j}}{j!}}
$$

Call blocking

- Call blocking $B_{\mathrm{c}}=$ probability that an arriving customer finds all n servers occupied = the fraction of arriving customers that are lost
- However, due to Poisson arrivals and PASTA property, the probability that an arriving customer finds all n servers occupied equals the probability that all n servers are occupied at an arbitrary time,
- In other words, call blocking B_{c} equals time blocking B_{t} :

$$
B_{\mathrm{c}}=B_{\mathrm{t}}=\frac{\frac{a^{n}}{n!}}{\sum_{j=0}^{n} \frac{a^{j}}{j!}}
$$

- This is Erlang's blocking formula

Contents

- Refresher: Simple teletraffic model
- Poisson model (∞ customers, ∞ servers)
- Erlang model (∞ customers, $n<\infty$ servers)
- Binomial model ($k<\infty$ customers, $n=k$ servers)
- Engset model ($k<\infty$ customers, $n<k$ servers)

Binomial model (M/M/k/k/k)

- Definition: Binomial model is the following (simple) teletraffic model:
- Finite number of independent customers ($k<\infty$)
- on-off type customers (alternating between idleness and activity)
- Idle times are IID and exponentially distributed with mean $1 / v$
- As many servers as customers ($n=k$)
- Service times are IID and exponentially distributed with mean $1 / \mu$
- No waiting places $(m=0)$
- Binomial model:
- Using Kendall's notation, this is an M/M/k/k/k queue
- Although a finite system, this is clearly lossless
- On-off type customer (cf. lecture 4 slide 7):

On-off type customer (1)

- Let $X_{j}(t)$ denote the state of customer $j(j=1,2, \ldots, k)$ at time t
- State $0=$ idle, state $1=$ active $=$ in service
- Consider what happens during a short time interval $(t, t+h]$:
- if $X_{j}(t)=0$, then, with prob. $v h+o(h)$, the customer becomes active (state transition $0 \rightarrow 1$)
- if $X_{j}(t)=1$, then, with prob. $\mu h+o(h)$, the customer becomes idle (state transition $1 \rightarrow 0$)
- Process $X_{j}(t)$ is clearly a Markov process with state transition diagram

- Note that process $X_{j}(t)$ is an irreducible birth-death process with a finite state space $S=\{0,1\}$

On-off type customer (2)

- Local balance equations (LBE):

$$
\pi_{0}^{(j)} \nu=\pi_{1}^{(j)} \mu \Rightarrow \pi_{1}^{(j)}=\frac{v}{\mu} \pi_{0}^{(j)}
$$

- Normalizing condition (N):

$$
\pi_{0}^{(j)}+\pi_{1}^{(j)}=\pi_{0}^{(j)}\left(1+\frac{v}{\mu}\right)=1 \Rightarrow \pi_{0}^{(j)}=\frac{\mu}{v+\mu}, \quad \pi_{1}^{(j)}=\frac{v}{v+\mu}
$$

- So, the equilibrium distribution of a single customer is the Bernoulli distribution with success probability $v /(v+\mu)$
- From this, we could deduce that the equilibrium distribution of the state of the whole system (that is: the number of active customers) is the binomial distribution $\operatorname{Bin}(k, v /(v+\mu))$

State transition diagram

- Let $X(t)$ denote the number of active customers
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval $(t, t+h]$:
- if $i<k$, then, with prob. $(k-i) \vee h+o(h)$, an idle customer becomes active (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i \mu h+o(h)$, an active customer becomes idle (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process
with a finite state space $S=\{0,1, \ldots, k\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{aligned}
& \pi_{i}(k-i) v=\pi_{i+1}(i+1) \mu \\
& \Rightarrow \pi_{i+1}=\frac{(k-i) v}{(i+1) \mu} \pi_{i} \\
& \Rightarrow \pi_{i}=\frac{k!}{i!(k-i)!}\left(\frac{v}{\mu}\right)^{i} \pi_{0}=\binom{k}{i}\left(\frac{v}{\mu}\right)^{i} \pi_{0}, \quad i=0,1, \ldots, k
\end{aligned}
$$

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{k} \pi_{i}=\pi_{0} \sum_{i=0}^{k}\binom{k}{i}\left(\frac{v}{\mu}\right)^{i}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{k}\binom{k}{i}\left(\frac{v}{\mu}\right)^{i}\right)^{-1}=\left(1+\frac{v}{\mu}\right)^{-k}=\left(\frac{\mu}{v+\mu}\right)^{k}
\end{align*}
$$

Equilibrium distribution (2)

- Thus, the equilibrium distribution is a binomial distribution:

$$
\begin{aligned}
& X \sim \operatorname{Bin}\left(k, \frac{v}{v+\mu}\right) \\
& P\{X=i\}=\pi_{i}=\binom{k}{i}\left(\frac{v}{v+\mu}\right)^{i}\left(\frac{\mu}{v+\mu}\right)^{k-i}, \quad i=0,1, \ldots, k \\
& E[X]=\frac{k v}{v+\mu}, \quad D^{2}[X]=k \cdot \frac{v}{v+\mu} \cdot \frac{\mu}{v+\mu}=\frac{k v \mu}{(v+\mu)^{2}}
\end{aligned}
$$

- Remark (insensitivity):
- The result is insensitive both to the service and the idle time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$ and any idle time distribution with mean $1 / v$
- So, instead of the $\mathrm{M} / \mathrm{M} / k / k / k$ model, we can consider, as well, the more general $\mathrm{G} / \mathrm{G} / k / k / k$ model

Contents

- Refresher: Simple teletraffic model
- Poisson model (∞ customers, ∞ servers)
- Erlang model (∞ customers, $n<\infty$ servers)
- Binomial model ($k<\infty$ customers, $n=k$ servers)
- Engset model ($k<\infty$ customers, $n<k$ servers)

Engset model (M/M/n/n/k)

- Definition: Engset model is the following (simple) teletraffic model:
- Finite number of independent customers ($k<\infty$)
- on-off type customers (alternating between idleness and activity)
- Idle times are IID and exponentially distributed with mean $1 / v$
- Less servers than customers ($n<k$)
- Service times are IID and exponentially distributed with mean $1 / \mu$
- No waiting places $(m=0)$
- Engset model:
- Using Kendall's notation, this is an M/M/n/n/k queue
- This is a pure loss system, and, thus, lossy

Note: If the system is full when an idle cust. tries to become an active cust., a new idle period starts.

- On-off type customer:

State transition diagram

- Let $X(t)$ denote the number of active customers
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval ($t, t+h]$:
- if $i<n$, then, with prob. $(k-i) v h+o(h)$, an idle customer becomes active (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $i \mu h+o(h)$, an active customer becomes idle (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process
with a finite state space $S=\{0,1, \ldots, n\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{aligned}
& \pi_{i}(k-i) v=\pi_{i+1}(i+1) \mu \\
& \Rightarrow \pi_{i+1}=\frac{(k-i) v}{(i+1) \mu} \pi_{i} \\
& \Rightarrow \pi_{i}=\frac{k!}{i!(k-i)!}\left(\frac{v}{\mu}\right)^{i} \pi_{0}=\binom{k}{i}\left(\frac{v}{\mu}\right)^{i} \pi_{0}, \quad i=0,1, \ldots, n
\end{aligned}
$$

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{n} \pi_{i}=\pi_{0} \sum_{i=0}^{n}\binom{k}{i}\left(\frac{v}{\mu}\right)^{i}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{n}\binom{k}{i}\left(\frac{v}{\mu}\right)^{i}\right)^{-1}
\end{align*}
$$

Equilibrium distribution (2)

- Thus, the equilibrium distribution is a truncated binomial distribution:

$$
P\{X=i\}=\pi_{i}=\frac{\binom{k}{i}\left(\frac{v}{\mu}\right)^{i}}{\sum_{j=0}^{n}\binom{k}{j}\left(\frac{v}{\mu}\right)^{j}}=\frac{\binom{k}{i}\left(\frac{v}{v+\mu}\right)^{i}\left(\frac{\mu}{v+\mu}\right)^{k-i}}{\sum_{j=0}^{n}\binom{k}{j}\left(\frac{v}{v+\mu}\right)^{j}\left(\frac{\mu}{v+\mu}\right)^{k-j}}, i=0,1, \ldots, n
$$

- Remark (insensitivity):
- The result is insensitive both to the service and the idle time distribution, that is: it is valid for any service time distribution with mean $1 / \mu$ and any idle time distribution with mean $1 / v$
- So, instead of the M/M/n/n/k model, we can consider, as well, the more general G/G/n/n/k model

Time blocking

- Time blocking $B_{\mathrm{t}}=$ probability that all n servers are occupied at an arbitrary time $=$ the fraction of time that all n servers are occupied
- For a stationary Markov process, this equals the probability π_{n} of the equilibrium distribution π. Thus,

$$
B_{\mathrm{t}}:=P\{X=n\}=\pi_{n}=\frac{\binom{k}{n}\left(\frac{v}{\mu}\right)^{n}}{\sum_{j=0}^{n}\binom{k}{j}\left(\frac{\nu}{\mu}\right)^{j}}
$$

Call blocking (1)

- Call blocking $B_{\mathrm{c}}=$ probability that an arriving customer finds all n servers occupied = the fraction of arriving customers that are lost
- In the Engset model, however, the "arrivals" do not follow a Poisson process. Thus, we cannot utilize the PASTA property any more.
- In fact, the distribution of the state that an "arriving" customer sees differs from the equilibrium distribution. Thus, call blocking B_{c} does not equal time blocking B_{t} in the Engset model.

Call blocking (2)

- Let π_{i}^{*} denote the probability that there are i active customers when an idle customer becomes active (which is called an "arrival")
- Consider a long time interval $(0, T)$:
- During this interval, the average time spent in state i is $\pi_{i} T$
- During this time, the average number of "arriving" customers (who all see the system to be in state i) is $(k-i) v \cdot \pi_{i} T$
- During the whole interval, the average number of "arriving" customers is $\Sigma_{j}(k-j) \vee \cdot \pi_{j} T$
- Thus,

$$
\pi_{i}^{*}=\frac{(k-i) v \cdot \pi_{i} T}{\sum_{j=0}^{n}(k-j) v \cdot \pi_{j} T}=\frac{(k-i) v \cdot \pi_{i}}{\sum_{j=0}^{n}(k-j) v \cdot \pi_{j}}, \quad i=0,1, \ldots, n
$$

Call blocking (3)

- It can be shown (exercise!) that

$$
\pi_{i}^{*}=\frac{\binom{k-1}{i}\left(\frac{v}{\mu}\right)^{i}}{\sum_{j=0}^{n}\binom{k-1}{j}\left(\frac{v}{\mu}\right)^{j}}, i=0,1, \ldots, n
$$

- If we write explicitly the dependence of these probabilities on the total number of customers, we get the following result:

$$
\pi_{i}^{*}(k)=\pi_{i}(k-1), \quad i=0,1, \ldots, n
$$

- In other words, an "arriving" customer sees such a system where there is one customer less (itself!) in equilibrium

Call blocking (4)

- By choosing $i=n$, we get the following formula for the call blocking probability:

$$
B_{\mathrm{c}}(k)=\pi_{n} *(k)=\pi_{n}(k-1)=B_{\mathrm{t}}(k-1)
$$

- Thus, for the Engset model, the call blocking in a system with k customers equals the time blocking in a system with $k-1$ customers:

$$
B_{\mathrm{c}}(k)=B_{\mathrm{t}}(k-1)=\frac{\binom{k-1}{n}\left(\frac{\nu}{\mu}\right)^{n}}{\sum_{j=0}^{n}\binom{k-1}{j}\left(\frac{v}{\mu}\right)^{j}}
$$

- This is Engset's blocking formula

THE END

