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Simple teletraffic model

« Customers arrive at rate A (customers per time unit)
— 1/\ = average inter-arrival time

* Customers are served by n parallel servers

* When busy, a server serves at rate I (customers per time unit)
— 1/ = average service time of a customer

e There are mwaiting places
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Pure waiting system

* Infinite number of waiting places (m = o)

— If all n servers are occupied when a customer arrives,
she occupies one of the waiting places

— No customers are lost but some of them have to wait before getting served
* From the customer’s point of view, it is interesting to know e.g.
— what is the probability that she has to wait “too long”?
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Queueing discipline

» Consider a single server (n = 1) queueing system
* Queueing discipline determines the way the server serves the
customers
— lttells
» whether the customers are served one-by-one or simultaneously
— Furthermore, if the customers are served one-by-one, it tells
* in which order they are taken into the service
— And if the customers are served simultaneously, it tells
* how the service capacity is shared among them
* A queueing discipline is called work-conserving if customers are
served with full service rate 4 whenever the system is non-empty

Various work-conserving queueing disciplines

e First In First Out (FIFO) = First Come First Served (FCFS)

— the most ordinary queueing discipline (“queue”)

— customers served one-by-one (with full service rate L)

— always serve the customer that has been waiting for the longest time
e Last In First Out (LIFO) = Last Come First Served (LCFS)

— “stack”

— customers served one-by-one (with full service rate L)

— always serve the customer that has been waiting for the shortest time
* Processor Sharing (PS)

— “fair queueing”

— customers served simultaneously

— when i customers in the system, each of them served with equal rate /i
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M/M/1 queue

» Consider the following simple teletraffic model:
— Infinite number of independent customers (K = oo)

Interarrival times are 11D and exponentially distributed with mean 1/A
S0, customers arrive according to a Poisson process with intensity A

— Oneserver (N=1)
— Service times are 11D and exponentially distributed with mean 1/u
— Infinite number of waiting places (m = o)
— Default queueing discipline: FIFO

« Using Kendall's notation, this is an M/M/1 queue
— more precisely: M/M/1-FIFO queue

* Notation:
— o= A =traffic load




Interesting random variables

X = number of customers in the system at an arbitrary time
= queue length in equilibrium

X* = number of customers in the system at an (typical) arrival time
= queue length seen by an arriving customer

W = waiting time of a (typical) customer
S=service time of a (typical) customer
D = W+ S=total time in the system of a (typical) customer = delay

State transition diagram

Let X(t) denote the number of customers in the system at time t
— Assume that X(t) =i at some time t, and
consider what happens during a short time interval (t, t+h]:
« with prob. Ah + o(h),
a new customer arrives (state transition i — i+1)
« ifi >0, then, with prob. ph + o(h),
a customer leaves the system (state transition i — i-1)

Process X(t) is clearly a Markov process with state transition diagram

A

Note that process X(t) is an irreducible birth-death process
with an infinite state space S={0,1,2,...}
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Equilibrium distribution (1)

» Local balance equations (LBE):
7iA =Tk (LBE)
U 7G4 =T =P
0 m=pm, i=012,...

* Normalizing condition (N):

SH=my o =1 (N)
i=0 i=0
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Equilibrium distribution (2)

e Thus, for a stable system (p < 1), the equilibrium distribution exists
and is a geometric distribution

p<1 0 X OGeom()
P(X=i}=m =(1-p)p', i=012,..

- P 2 - P
EIX1= 55, OAXI= 2

 Remarks:
— This result is valid for any work-conserving queueing discipline
* FIFO, LIFO, PS, ...

— This result is not insensitive to the service time distribution
as far as the FIFO queueing discipline is concerned

— However, for any symmetric queueing discipline (such as LIFO or PS)
the result is, indeed, insensitive to the service time distribution 12




Mean queue length E[X] vs. traffic load p
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Mean delay

Let D denote the total time (delay) in the system of a (typical) customer
— including both the waiting time W and the service time S D =W+ S
Little’s formula: E[X] = ATE[D]. Thus,

_EX]_1P 1121 - 1
SN S e i =y

Remarks:
— The mean delay is the same for all work-conserving queueing disciplines
e FIFO, LIFO, PS, ...
— But the variance and other moments are different!
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Mean delay E[D] vs. traffic load p

E[D]
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Mean waiting time

Let W denote the waiting time of a (typical) customer
Since W=D - S we have

E[W] =E[D]-E[S]= [ G% - =705

Remarks:

— The mean waiting time is the same for all work-conserving queueing
disciplines
* FIFO, LIFO, PS, ...
— But the variance and other moments are different!
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Waiting time distribution (1)

« Let Wdenote the waiting time of a (typical) customer

* Let X* denote the number of customers in the system at the arrival time
« PASTA: P{X* =i} =P{X=i} =Tt.

« Assume now, for a while, that X* =i

— Service times S,,...,§ of the waiting customers are 11D and CJExp ()
— Due to the memoryless property of the exponential distribution,
the remaining service time §* of the customer in service also follows
Exp(u)-distribution (and is independent of everything else)
— Due to the FIFO queueing discipline, W=S* +S,+ ... + §

— Construct a Poisson (point) process T,, by defining T, = S;* and
T,=5*+S,+... +§,n=2 Now (since X* =i): W>t = T; >t

S*.S S ., S, . §

L 0 13 Ti—11 T 17

Waiting time distribution (2)

e SinceW=0 < X* =0, we have
PIW=0 =P{X*=0}=my=1-p

P{W >t} = ZP{W>t|X*—|}P{X*—|}

i=1
= Z P{rj >t} = z P{rj >t}(1- ,0),0
=1 =1

« Denote by A(t) the Poisson (counter) process corresponding to T,
— Itfollows that: T, >t = A(t) <i-1
— On the other hand, we know that A(t) DPOlsson [dt). Thus,

P{r; >t} = P{A(t)<i -1 = z(”‘)’ y
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Waiting time distribution (3)

By combining the previous formulas, we get

P{W >t} = ZP{T.>t}(1 p)p

=1
o -1 :
—1] =0
_ < (utp) 1
_pZ : e ﬂt(]_ ’0)___2'0' (j+1)
]=0 I=]+1
=pY (ﬂtﬁ)‘ e Ht =y Pt — 1 o= H(I=P)t
j=0 ~
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Waiting time distribution (4)

« Waiting time W can thus be presented as a product W = JD of two

independent random variables J [JBernoulli(p) and D OExp(1-p)):
P{W=0=P{J=0}=1-p
PIW >t} =P{J=1D>t} = ple “=At 50

_ _ p
E[W] = E[J]E[D] = pLet s = #%

E[W?]=P{J = ]}E[D]—pD —1D
/J(lp) (1p)

D2W] = EW?] - Ew]? = L 2&4)
u? (1-p)?
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M/M/ n queue

» Consider the following simple teletraffic model:
— Infinite number of independent customers (K = oo)

Interarrival times are 11D and exponentially distributed with mean 1/A
S0, customers arrive according to a Poisson process with intensity A

— Finite number of servers (N < o)
— Service times are 11D and exponentially distributed with mean 1/u
— Infinite number of waiting places (m = o)
— Default queueing discipline: FCFS

« Using Kendall's notation, this is an M/M/ n queue
— more precisely: M/M/n-FCFSqueue

* Notation:
- p=MN(np) = traffic load

22




State transition diagram

Let X(t) denote the number of customers in the system at time t
— Assume that X(t) =i at some time t, and
consider what happens during a short time interval (t, t+h]:
« with prob. Ah + o(h),
a new customer arrives (state transition i — i+1)
« ifi >0, then, with prob. min{i,n} quh + o(h),
a customer leaves the system (state transition i — i-1)

Process X(t) is clearly a Markov process with state transition diagram

A
(DDt o i o
«—— «— «— «— «——
M 2 N Ny nu

« Note that process X(t) is an irreducible birth-death process
with an infinite state space S={0,1,2,...}
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Equilibrium distribution (1)

« Local balance equations (LBE) for i < n:

7id = (i + D) (LBE)
= A o NP
- i1 =y il
[
0 7 =(nﬁ) Ty, 1=01...,n
« Local balance equations (LBE) for i = n:
TiA = T (LBE)
0 g =, 7 = P

_ i-n_ _ i-n(m)" __ _n"p L
U m=p "my=p = o, I =n,n+1,...2




Equilibrium distribution (2)

Normalizing condition (N):

zﬂ

D]TO

Notation: a = Z

My W EL

-1
= %72 (np) (n,O) Zpl—nE
n
(np) (no)" R
_%Z n'(l—,O)E a+p Tp<l

n no)"
(p)’ B= s

=0
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Equilibrium distribution (3)

Thus, for a stable system (p <1, thatis: A < np), the equilibrium
distribution exists and is as follows:

p<1l 0

(np)' - 1 _

O Gia 1=01...,n
P{><=i}=ni:mn”pi ”Iﬁ

] n %’ I=n,n+l,
n=1: a=1, ,8—1,0 Ty = aiﬁ =1-p

_2p? -1 _1-p

n=2: a=1+2p, B= Ty = =

1 p’ a+f 1+p
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Probability of waiting

» Let pyy denote the probability that an arriving customer has to wait

e Let X* denote the number of customers in the system at an arrival time

« An arriving customer has to wait whenever all the servers are occupied
at her arrival time. Thus,

pw = P{X* 21}
o PASTA: P{X* =i} = P{X: i} =Tg. Thus,

W P{X*>n}—ZIT ZITOL ﬂ[!(n’o) p

— n(-p) ~ a+p
n=1: py=p

2
n=2: p\NZir’Op 27

Mean number of waiting customers

 Let X,y denote the number of waiting customers in equilibrium
« Then

(04

EXw] = 3 (-7 =7 ,ﬁ?f_’;z(i -n){-p)p' "

i=n

_ P
_p\N%

p _ p°
n=1 E[Xwl=pwh=,=1",
3

n=2: E[Xw]=pw q_p_1+p E.‘[—,O_l_pz
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Mean waiting time

Let W denote the waiting time of a (typical) customer
« Little’s formula: E[X,,] = AE[W]. Thus,

E[Xw] 1 _lgPw _ 1
EW] = 3O 055 = Bty = Pw Gty
n=1: E[\N]—lllqo‘ﬂ:}[%
2
_1 Pw 1P
n=2 WIS B T a2
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Mean delay

Let D denote the total time (delay) in the system of a (typical) customer

— including both the waiting time W and the service time S D =W+ S
Then,

E[D]:E[\N]+E[S]='Lll%+lﬁzm%+l
n=1: E[D]:;[B%+1E=;[Q§+1)=i%
n=2: E[D]—lg% 1] e° +1B= o1

1
(1-p) U T1-p H 1-p?
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Mean queue length

» Let X denote the number of customers in the system (queue length) in
equilibrium

« Little's formula: E[X] = A[E[D]. Thus,

E[X]=ACE[D] = pw B2 +

n=1: E[X]=py

0
%,o
2
n=2: E[X]=pw %+2p ZP%Jrzp:ZP
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Waiting time distribution (1)

Let W denote the waiting time of a (typical) customer

Let X* denote the number of customers in the system at the arrival time

The customer has to wait only if X* = n. This happens with prob. p,.

Under the assumption that X* =i = n, the system, however, looks like
an ordinary M/M/1 queue with arrival rate A and service rate Npl.
— Let W’ denote the waiting time of a (typical) customer in this M/M/1 queue
— Let X* denote the number of customers in the system at the arrival time
It follows that

PW =0} =1- pyy
POW >t} = P{X* = P P{W >t | X* = 1}
= Pw [P{W'>t|X*'2]} = pw @‘ﬂ,u(l—p)t’ t>0
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Waiting time distribution (2)

Waiting time W can thus be presented as a product W= JD’ of two
indep. random variables J LJBernoullifp,) and D’ OExp(nu(1-p)):

P(W =0} =P{J=0} =1- py
P(W >t} =P{J=1D'>t} = g,\,@‘”ﬁ‘(l‘mt, t>0

EW] = ELITELDT = Pw G- plzgn%

E[W?] = P{J =B E[D"*] = py O =1 D
R (1 P2 12 (1—p)

D[W] = E]W?] - E[w]? = L (P E=Pw)
u?  n?(1-p)?

Example (1)

Printer problem
— Consider the following two different configurations:
« One rapid printer (11D printing times LJEXp(24))
« Two slower parallel printers (11D printing times EXp(u))
— Criterion: minimize mean delay E[D]
« One rapid printer (M/M/1 model with p = A/(2L)):

E[D1]=21ﬂq_17

« Two slower printers (M/M/2 model with p = A/(2)):

- 171 _ —
E[ D2] U []!.—,02 2# |j(1—p)(1+,0) E[ Dl] qj > E[ Dl]




8. Queueing systems

Example (2)
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8. Queueing systems

THE END
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