8. Queueing systems

Contents

- Refresher: Simple teletraffic model
- M/M/1 (1 server, ∞ waiting places)
- $\mathrm{M} / \mathrm{M} / n$ (n servers, ∞ waiting places)

Simple teletraffic model

- Customers arrive at rate λ (customers per time unit)
- $1 / \lambda=$ average inter-arrival time
- Customers are served by n parallel servers
- When busy, a server serves at rate μ (customers per time unit)
- $1 / \mu=$ average service time of a customer
- There are m waiting places

Pure waiting system

- Infinite number of waiting places $(m=\infty)$
- If all n servers are occupied when a customer arrives, she occupies one of the waiting places
- No customers are lost but some of them have to wait before getting served
- From the customer's point of view, it is interesting to know e.g.
- what is the probability that she has to wait "too long"?

Queueing discipline

- Consider a single server $(n=1)$ queueing system
- Queueing discipline determines the way the server serves the customers
- It tells
- whether the customers are served one-by-one or simultaneously
- Furthermore, if the customers are served one-by-one, it tells
- in which order they are taken into the service
- And if the customers are served simultaneously, it tells
- how the service capacity is shared among them
- A queueing discipline is called work-conserving if customers are served with full service rate μ whenever the system is non-empty

Various work-conserving queueing disciplines

- First In First Out (FIFO) = First Come First Served (FCFS)
- the most ordinary queueing discipline ("queue")
- customers served one-by-one (with full service rate μ)
- always serve the customer that has been waiting for the longest time
- Last In First Out (LIFO) = Last Come First Served (LCFS)
- "stack"
- customers served one-by-one (with full service rate μ)
- always serve the customer that has been waiting for the shortest time
- Processor Sharing (PS)
- "fair queueing"
- customers served simultaneously
- when i customers in the system, each of them served with equal rate μ / i

Contents

- Refresher: Simple teletraffic model
- M/M/1 (1 server, ∞ waiting places)
- M/M/n (n servers, ∞ waiting places)

M/M/1 queue

- Consider the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- One server $(n=1)$
- Service times are IID and exponentially distributed with mean $1 / \mu$
- Infinite number of waiting places $(m=\infty)$
- Default queueing discipline: FIFO
- Using Kendall's notation, this is an M/M/1 queue
- more precisely: M/M/1-FIFO queue
- Notation:
- $\rho=\lambda / \mu=$ traffic load

Interesting random variables

- $X=$ number of customers in the system at an arbitrary time
= queue length in equilibrium
- $X^{*}=$ number of customers in the system at an (typical) arrival time
= queue length seen by an arriving customer
- $W=$ waiting time of a (typical) customer
- $\quad S=$ service time of a (typical) customer
- $D=W+S=$ total time in the system of a (typical) customer = delay

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval ($t, t+h$]:
- with prob. $\lambda h+o(h)$,
a new customer arrives (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $\mu h+o(h)$, a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with an infinite state space $S=\{0,1,2, \ldots\}$

Equilibrium distribution (1)

- Local balance equations (LBE):

$$
\begin{align*}
& \pi_{i} \lambda=\pi_{i+1} \mu \tag{LBE}\\
& \Rightarrow \pi_{i+1}=\frac{\lambda}{\mu} \pi_{i}=\rho \pi_{i} \\
& \Rightarrow \pi_{i}=\rho^{i} \pi_{0}, \quad i=0,1,2, \ldots
\end{align*}
$$

- Normalizing condition (N):

$$
\begin{align*}
& \sum_{i=0}^{\infty} \pi_{i}=\pi_{0} \sum_{i=0}^{\infty} \rho^{i}=1 \tag{N}\\
& \Rightarrow \pi_{0}=\left(\sum_{i=0}^{\infty} \rho^{i}\right)^{-1}=\left(\frac{1}{1-\rho}\right)^{-1}=1-\rho, \text { if } \rho<1 \tag{11}
\end{align*}
$$

8. Queueing systems

Equilibrium distribution (2)

- Thus, for a stable system ($\rho<1$), the equilibrium distribution exists and is a geometric distribution:

$$
\begin{aligned}
& \rho<1 \Rightarrow X \sim \operatorname{Geom}(\rho) \\
& P\{X=i\}=\pi_{i}=(1-\rho) \rho^{i}, \quad i=0,1,2, \ldots \\
& E[X]=\frac{\rho}{1-\rho}, \quad D^{2}[X]=\frac{\rho}{(1-\rho)^{2}}
\end{aligned}
$$

- Remarks:
- This result is valid for any work-conserving queueing discipline
- FIFO, LIFO, PS, ...
- This result is not insensitive to the service time distribution as far as the FIFO queueing discipline is concerned
- However, for any symmetric queueing discipline (such as LIFO or PS) the result is, indeed, insensitive to the service time distribution

Mean queue length $E[X]$ vs. traffic load ρ

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer
- including both the waiting time W and the service time $S: D=W+S$
- Little's formula: $E[X]=\lambda \cdot E[D]$. Thus,

$$
E[D]=\frac{E[X]}{\lambda}=\frac{1}{\lambda} \cdot \frac{\rho}{1-\rho}=\frac{1}{\mu} \cdot \frac{1}{1-\rho}=\frac{1}{\mu-\lambda}
$$

- Remarks:
- The mean delay is the same for all work-conserving queueing disciplines
- FIFO, LIFO, PS, ...
- But the variance and other moments are different!

Mean delay $E[D]$ vs. traffic load ρ

Mean waiting time

- Let W denote the waiting time of a (typical) customer
- Since $W=D-S$, we have

$$
E[W]=E[D]-E[S]=\frac{1}{\mu} \cdot \frac{1}{1-\rho}-\frac{1}{\mu}=\frac{1}{\mu} \cdot \frac{\rho}{1-\rho}
$$

- Remarks:
- The mean waiting time is the same for all work-conserving queueing disciplines
- FIFO, LIFO, PS, ...
- But the variance and other moments are different!

Waiting time distribution (1)

- Let W denote the waiting time of a (typical) customer
- Let X^{*} denote the number of customers in the system at the arrival time
- PASTA: $P\left\{X^{*}=i\right\}=P\{X=i\}=\pi_{i}$.
- Assume now, for a while, that $X^{*}=i$
- Service times S_{2}, \ldots, S_{i} of the waiting customers are IID and $\sim \operatorname{Exp}(\mu)$
- Due to the memoryless property of the exponential distribution, the remaining service time S_{1} * of the customer in service also follows $\operatorname{Exp}(\mu)$-distribution (and is independent of everything else)
- Due to the FIFO queueing discipline, $W=S_{1} *+S_{2}+\ldots+S_{i}$
- Construct a Poisson (point) process τ_{n} by defining $\tau_{1}=S_{1} *$ and $\tau_{n}=S_{1}{ }^{*}+S_{2}+\ldots+S_{n}, n \geq 2$. Now (since $X^{*}=i$): $W>t \Leftrightarrow \tau_{i}>t$

Waiting time distribution (2)

- Since $W=0 \Leftrightarrow X^{*}=0$, we have

$$
\begin{aligned}
P\{W=0\} & =P\left\{X^{*}=0\right\}=\pi_{0}=1-\rho \\
P\{W>t\} & =\sum_{i=1}^{\infty} P\left\{W>t \mid X^{*}=i\right\} P\left\{X^{*}=i\right\} \\
& =\sum_{i=1}^{\infty} P\left\{\tau_{i}>t\right\} \pi_{i}=\sum_{i=1}^{\infty} P\left\{\tau_{i}>t\right\}(1-\rho) \rho^{i}
\end{aligned}
$$

- Denote by $A(t)$ the Poisson (counter) process corresponding to τ_{n}
- It follows that: $\tau_{i}>t \Leftrightarrow A(t) \leq i-1$
- On the other hand, we know that $A(t) \sim$ Poisson (μt). Thus,

$$
P\left\{\tau_{i}>t\right\}=P\{A(t) \leq i-1\}=\sum_{j=0}^{i-1} \frac{(\mu t)^{j}}{j!} e^{-\mu t}
$$

Waiting time distribution (3)

- By combining the previous formulas, we get

$$
\begin{aligned}
& P\{W>t\}=\sum_{i=1}^{\infty} P\left\{\tau_{i}>t\right\}(1-\rho) \rho^{i} \\
& \quad=\sum_{i=1}^{\infty} \sum_{j=0}^{i-1} \frac{(\mu t)^{j}}{j!} e^{-\mu t}(1-\rho) \rho^{i} \\
& \quad=\rho \sum_{j=0}^{\infty} \frac{(\mu t \rho)^{j}}{j!} e^{-\mu t}(1-\rho) \sum_{i=j+1}^{\infty} \rho^{i-(j+1)} \\
& \quad=\rho \sum_{j=0}^{\infty} \frac{(\mu t \rho)^{j}}{j!} e^{-\mu t}=\rho e^{\mu t \rho} e^{-\mu t}=\rho e^{-\mu(1-\rho) t}
\end{aligned}
$$

Waiting time distribution (4)

- Waiting time W can thus be presented as a product $W=J D$ of two independent random variables $J \sim \operatorname{Bernoulli}(\rho)$ and $D \sim \operatorname{Exp}(\mu(1-\rho))$:

$$
\begin{aligned}
& P\{W=0\}=P\{J=0\}=1-\rho \\
& P\{W>t\}=P\{J=1, D>t\}=\rho \cdot e^{-\mu(1-\rho) t}, t>0 \\
& E[W]=E[J] E[D]=\rho \cdot \frac{1}{\mu(1-\rho)}=\frac{1}{\mu} \cdot \frac{\rho}{1-\rho} \\
& E\left[W^{2}\right]=P\{J=1\} E\left[D^{2}\right]=\rho \cdot \frac{2}{\mu^{2}(1-\rho)^{2}}=\frac{1}{\mu^{2}} \cdot \frac{2 \rho}{(1-\rho)^{2}} \\
& D^{2}[W]=E\left[W^{2}\right]-E[W]^{2}=\frac{1}{\mu^{2}} \cdot \frac{\rho(2-\rho)}{(1-\rho)^{2}}
\end{aligned}
$$

Contents

- Refresher: Simple teletraffic model
- M/M/1 (1 server, ∞ waiting places)
- M/M/n (n servers, ∞ waiting places)

M/M/n queue

- Consider the following simple teletraffic model:
- Infinite number of independent customers ($k=\infty$)
- Interarrival times are IID and exponentially distributed with mean $1 / \lambda$
- so, customers arrive according to a Poisson process with intensity λ
- Finite number of servers ($n<\infty$)
- Service times are IID and exponentially distributed with mean $1 / \mu$
- Infinite number of waiting places $(m=\infty)$
- Default queueing discipline: FCFS
- Using Kendall's notation, this is an M/M/n queue
- more precisely: M/M/n-FCFS queue
- Notation:
- $\rho=\lambda /(n \mu)=$ traffic load

State transition diagram

- Let $X(t)$ denote the number of customers in the system at time t
- Assume that $X(t)=i$ at some time t, and consider what happens during a short time interval ($t, t+h$]:
- with prob. $\lambda h+o(h)$,
a new customer arrives (state transition $i \rightarrow i+1$)
- if $i>0$, then, with prob. $\min \{i, n\} \cdot \mu h+o(h)$,
a customer leaves the system (state transition $i \rightarrow i-1$)
- Process $X(t)$ is clearly a Markov process with state transition diagram

- Note that process $X(t)$ is an irreducible birth-death process with an infinite state space $S=\{0,1,2, \ldots\}$

Equilibrium distribution (1)

- Local balance equations (LBE) for $i<n$:

$$
\begin{align*}
& \pi_{i} \lambda=\pi_{i+1}(i+1) \mu \tag{LBE}\\
& \Rightarrow \pi_{i+1}=\frac{\lambda}{(i+1) \mu} \pi_{i}=\frac{n \rho}{i+1} \pi_{i} \\
& \Rightarrow \pi_{i}=\frac{(n \rho)^{i}}{i!} \pi_{0}, \quad i=0,1, \ldots, n
\end{align*}
$$

- Local balance equations (LBE) for $i \geq n$:

$$
\begin{aligned}
& \pi_{i} \lambda=\pi_{i+1} n \mu \\
& \Rightarrow \pi_{i+1}=\frac{\lambda}{n \mu} \pi_{i}=\rho \pi_{i} \\
& \Rightarrow \pi_{i}=\rho^{i-n} \pi_{n}=\rho^{i-n} \frac{(n \rho)^{n}}{n!} \pi_{0}=\frac{n^{n} \rho^{i}}{n!} \pi_{0}, \quad i=n, n+1, \ldots 24
\end{aligned}
$$

Equilibrium distribution (2)

- Normalizing condition (N):

$$
\begin{align*}
\sum_{i=0}^{\infty} \pi_{i}= & \pi_{0}\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\sum_{i=n}^{\alpha} \frac{n^{n} \rho^{i}}{n!}\right)=1 \tag{N}\\
\Rightarrow \pi_{0} & =\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\frac{(n \rho)^{n}}{n!} \sum_{i=n}^{\infty} \rho^{i-n}\right)^{-1} \\
& =\left(\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}+\frac{(n \rho)^{n}}{n!(1-\rho)}\right)^{-1}=\frac{1}{\alpha+\beta}, \text { if } \rho<1
\end{align*}
$$

Notation : $\alpha=\sum_{i=0}^{n-1} \frac{(n \rho)^{i}}{i!}, \quad \beta=\frac{(n \rho)^{n}}{n!(1-\rho)}$

Equilibrium distribution (3)

- Thus, for a stable system ($\rho<1$, that is: $\lambda<n \mu$), the equilibrium distribution exists and is as follows:

$$
\begin{aligned}
& \rho<1 \Rightarrow \\
& P\{X=i\}=\pi_{i}=\left\{\begin{array}{l}
\frac{(n \rho)^{i}}{i!} \cdot \frac{1}{\alpha+\beta}, \quad i=0,1, \ldots, n \\
\frac{n^{n} \rho^{i}}{n!} \cdot \frac{1}{\alpha+\beta}, \quad i=n, n+1, \ldots
\end{array}\right. \\
& n=1: \quad \alpha=1, \quad \beta=\frac{\rho}{1-\rho}, \quad \pi_{0}=\frac{1}{\alpha+\beta}=1-\rho \\
& n=2: \quad \alpha=1+2 \rho, \quad \beta=\frac{2 \rho^{2}}{1-\rho}, \quad \pi_{0}=\frac{1}{\alpha+\beta}=\frac{1-\rho}{1+\rho}
\end{aligned}
$$

Probability of waiting

- Let p_{W} denote the probability that an arriving customer has to wait
- Let X^{*} denote the number of customers in the system at an arrival time
- An arriving customer has to wait whenever all the servers are occupied at her arrival time. Thus,

$$
p_{W}=P\left\{X^{*} \geq n\right\}
$$

- PASTA: $P\left\{X^{*}=i\right\}=P\{X=i\}=\pi_{i}$. Thus,

$$
\begin{gather*}
p_{W}=P\left\{X^{*} \geq n\right\}=\sum_{i=n}^{\propto} \pi_{i}=\sum_{i=n}^{\propto} \pi_{0} \cdot \frac{n^{n} \rho^{i}}{n!}=\pi_{0} \cdot \frac{(n \rho)^{n}}{n!(1-\rho)}=\frac{\beta}{\alpha+\beta} \\
n=1: \quad p_{W}=\rho \\
n=2: \quad p_{W}=\frac{2 \rho^{2}}{1+\rho} \tag{27}
\end{gather*}
$$

8. Queueing systems

Mean number of waiting customers

- Let X_{W} denote the number of waiting customers in equilibrium
- Then

$$
\begin{aligned}
E\left[X_{W}\right] & =\sum_{i=n}^{\alpha}(i-n) \pi_{i}=\pi_{0} \frac{(n \rho)^{n}}{n!(1-\rho)} \sum_{i=n}^{\propto}(i-n) \cdot(1-\rho) \rho^{i-n} \\
& =p_{W} \cdot \frac{\rho}{1-\rho}
\end{aligned}
$$

$$
\begin{aligned}
& n=1: \quad E\left[X_{W}\right]=p_{W} \cdot \frac{\rho}{1-\rho}=\frac{\rho^{2}}{1-\rho} \\
& n=2: \quad E\left[X_{W}\right]=p_{W} \cdot \frac{\rho}{1-\rho}=\frac{2 \rho^{2}}{1+\rho} \cdot \frac{\rho}{1-\rho}=\frac{2 \rho^{3}}{1-\rho^{2}}
\end{aligned}
$$

Mean waiting time

- Let W denote the waiting time of a (typical) customer
- Little's formula: $E\left[X_{W}\right]=\lambda \cdot E[W]$. Thus,

$$
E[W]=\frac{E\left[X_{W}\right]}{\lambda}=\frac{1}{\lambda} \cdot p_{W} \cdot \frac{\rho}{1-\rho}=\frac{1}{\mu} \cdot \frac{p_{W}}{n(1-\rho)}=p_{W} \cdot \frac{1}{n \mu-\lambda}
$$

$$
\begin{aligned}
& n=1: \quad E[W]=\frac{1}{\mu} \cdot \frac{p_{W}}{1-\rho}=\frac{1}{\mu} \cdot \frac{\rho}{1-\rho} \\
& n=2: E[W]=\frac{1}{\mu} \cdot \frac{p_{W}}{2(1-\rho)}=\frac{1}{\mu} \cdot \frac{\rho^{2}}{1-\rho^{2}}
\end{aligned}
$$

Mean delay

- Let D denote the total time (delay) in the system of a (typical) customer
- including both the waiting time W and the service time $S: D=W+S$
- Then,

$$
\begin{gathered}
E[D]=E[W]+E[S]=\frac{1}{\mu} \cdot\left(\frac{p_{W}}{n(1-\rho)}+1\right)=p_{W} \cdot \frac{1}{n \mu-\lambda}+\frac{1}{\mu} \\
n=1: E[D]=\frac{1}{\mu} \cdot\left(\frac{p_{W}}{1-\rho}+1\right)=\frac{1}{\mu} \cdot\left(\frac{\rho}{1-\rho}+1\right)=\frac{1}{\mu} \cdot \frac{1}{1-\rho} \\
n=2: E[D]=\frac{1}{\mu} \cdot \frac{p_{W}}{2(1-\rho)}=\frac{1}{\mu} \cdot\left(\frac{\rho^{2}}{1-\rho^{2}}+1\right)=\frac{1}{\mu} \cdot \frac{1}{1-\rho^{2}}
\end{gathered}
$$

Mean queue length

- Let X denote the number of customers in the system (queue length) in equilibrium
- Little's formula: $E[X]=\lambda \cdot E[D]$. Thus,

$$
E[X]=\lambda \cdot E[D]=p_{W} \cdot \frac{\lambda}{n \mu-\lambda}+\frac{\lambda}{\mu}=p_{W} \cdot \frac{\rho}{1-\rho}+n \rho
$$

$$
\begin{aligned}
& n=1: E[X]=p_{W} \cdot \frac{\rho}{1-\rho}+\rho=\rho \cdot \frac{\rho}{1-\rho}+\rho=\frac{\rho}{1-\rho} \\
& n=2: E[X]=p_{W} \cdot \frac{\rho}{1-\rho}+2 \rho=\frac{2 \rho^{2}}{1+\rho} \cdot \frac{\rho}{1-\rho}+2 \rho=\frac{2 \rho}{1-\rho^{2}}
\end{aligned}
$$

Waiting time distribution (1)

- Let W denote the waiting time of a (typical) customer
- Let X^{*} denote the number of customers in the system at the arrival time
- The customer has to wait only if $X^{*} \geq n$. This happens with prob. p_{W}.
- Under the assumption that $X^{*}=i \geq n$, the system, however, looks like an ordinary $\mathrm{M} / \mathrm{M} / 1$ queue with arrival rate λ and service rate $n \mu$.
- Let W^{\prime} denote the waiting time of a (typical) customer in this $\mathrm{M} / \mathrm{M} / 1$ queue
- Let X^{*}, denote the number of customers in the system at the arrival time
- It follows that

$$
\begin{aligned}
P\{W=0\} & =1-p_{W} \\
P\{W>t\} & =P\left\{X^{*} \geq n\right\} P\left\{W>t \mid X^{*} \geq n\right\} \\
& =p_{W} \cdot P\left\{W^{\prime}>t \mid X^{*} \geq 1\right\}=p_{W} \cdot e^{-n \mu(1-\rho) t}, \quad t>0
\end{aligned}
$$

Waiting time distribution (2)

- Waiting time W can thus be presented as a product $W=J D^{\prime}$ of two indep. random variables $J \sim \operatorname{Bernoulli}\left(p_{W}\right)$ and $D^{\prime} \sim \operatorname{Exp}(n \mu(1-\rho))$:

$$
\begin{aligned}
& P\{W=0\}=P\{J=0\}=1-p_{W} \\
& P\{W>t\}=P\left\{J=1, D^{\prime}>t\right\}=p_{W} \cdot e^{-n \mu(1-\rho) t}, t>0 \\
& E[W]=E[J] E\left[D^{\prime}\right]=p_{W} \cdot \frac{1}{n \mu(1-\rho)}=\frac{1}{\mu} \cdot \frac{p_{W}}{n(1-\rho)} \\
& E\left[W^{2}\right]=P\{J=1\} E\left[D^{\prime 2}\right]=p_{W} \cdot \frac{2}{n^{2} \mu^{2}(1-\rho)^{2}}=\frac{1}{\mu^{2}} \cdot \frac{2 p_{W}}{n^{2}(1-\rho)^{2}} \\
& D^{2}[W]=E\left[W^{2}\right]-E[W]^{2}=\frac{1}{\mu^{2}} \cdot \frac{p_{W}\left(2-p_{W}\right)}{n^{2}(1-\rho)^{2}}
\end{aligned}
$$

Example (1)

- Printer problem
- Consider the following two different configurations:
- One rapid printer (IID printing times $\sim \operatorname{Exp}(2 \mu)$)
- Two slower parallel printers (IID printing times $\sim \operatorname{Exp}(\mu)$)
- Criterion: minimize mean delay $E[D]$
- One rapid printer (M/M/1 model with $\rho=\lambda /(2 \mu)$):

$$
E\left[D_{1}\right]=\frac{1}{2 \mu} \cdot \frac{1}{1-\rho}
$$

- Two slower printers ($M / M / 2$ model with $\rho=\lambda /(2 \mu)$):

$$
E\left[D_{2}\right]=\frac{1}{\mu} \cdot \frac{1}{1-\rho^{2}}=\frac{1}{2 \mu} \cdot \frac{2}{(1-\rho)(1+\rho)}=E\left[D_{1}\right] \cdot \frac{2}{1+\rho}>E\left[D_{1}\right]
$$

Example (2)

THE END

