9. Simulation

Contents

Introduction

Generation of realizations of the traffic process
Generation of realizations of random variables
Collection of data

Statistical analysis




What is it?

Simulation is (at least from the teletraffic point of view)
a statistical method to estimate the performance

(or some other important characteristic)

of the system under consideration.

It typically consists of the following four phases:
— Modelling of the system (real or imaginary) as a dynamic stochastic process
— Generation of the realizations of this stochastic process (“observations”)
» Such realizations are called simulation runs
— Collection of data (“measurements”)
— Statistical analysis of the gathered data, and drawing of the conclusions

Alternative to what?

In previous lectures, we have got familiar with an alternative way to
determine the performance: mathematical analysis
It includes only the following two phases:

— Modelling of the system as a stochastic process.
(In this course, we have restricted ourselves to birth-death processes.)

— Solving of the model by means of mathematical analysis
The modelling phase is common to both of them
However, the accuracy (faithfulness) of the model that these methods
allow can be very different

— unlike simulation, mathematical analysis typically requires (heavily)
restrictive assumptions to be made
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Real/imaginary system

<«— modelling

Mathematical model
(as a stochastic process)

«— validation of the model

Performance analysis

Mathematical

) Simulation
analysis

Analysis vs. simulation (1)

* Pros of analysis
— Results produced rapidly (after the analysis is made)
— Exact (accurate) results (for the model)
— Gives insight
— Optimization possible (but typically hard)
* Cons of analysis
— Requires restrictive assumptions
[] the resulting model is typically too simple
(not capturing all essential features of the system under consideration)
[1 performance analysis of complicated systems impossible

— Even under these assumptions, the analysis itself may be (extremely) hard




Analysis vs. simulation (2)

* Pros of simulation
— No restrictive assumptions needed (in principle)
[l performance analysis of complicated systems possible
— Modelling straightforward
» Cons of simulation

— Production of results time-consuming
(simulation programs being typically processor intensive)

— Results inaccurate (however, they can be made as accurate as required by
increasing the number of simulation runs, but this takes even more time)

— Does not necessarily offer a general insight (?)

— Optimization possible only between very few alternatives (parameter
combinations or controls)

Simulation of a stochastic process

* Modelling of the system as a stochastic process
— This has already been discussed in this course.

— In the sequel, we will take the model (that is: the stochastic process) for
granted. In addition, we will restrict ourselves to simple teletraffic models.

* Generation of the realizations of this stochastic process
— Generation of random numbers

— Construction of the realization of the process from event to event
(discrete event simulation)

e Collection of data

— Transient phase vs. steady state (stationarity, equilibrium)
» Statistical analysis and conclusions

— Point estimators

— Confidence intervals




Implementation

» Simulation is typically implemented as a computer program
« Simulation program generally comprises the following phases
(excluding modelling and conclusions)
— Generation of the realizations of the stochastic process
— Collection of data
— Statistical analysis of the gathered data
» Simulation program can be implemented by
— ageneral-purpose programming language, e.g. C or C++
» most flexible, but tedious and prone to programming errors
— utilizing simulation-specific program libraries, e.g. CNCL
— utilizing simulation-specific software, e.g. OPNET, BONeS, NS
* most rapid and reliable (depending on s/w), but rigid

Simulation types

« What we have described above, is

— discrete (event-based), dynamic (evolving in time) and stochastic
(including random components) simulation

 This is called discrete event simulation
— This is also what we will consider later on in this lecture
* Other types:

— continuous simulation: state and parameter spaces of the process are
continuous; description of the system typically by differential equations,
e.g. simulation of the trajectory of an aircraft

— static simulation: time plays no role, e.g. numerical integration of a multi-
dimensional integral by Monte Carlo method

— deterministic simulation: no random components, e.g. the first example
above
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Generation of the realizations of the traffic process

* Assume that the modelling part of simulation has been done
— So the stochastic process describing the evolution of the system is known

* Next step is to generate realizations of this process.
— For this, we have to:

» Generate a realization (value) for all the random variables affecting the
evolution of the process (taking properly into account all the (statistical)
dependencies between these variables)

» Construct a realization of the process (using the generated values)
— These two parts are overlapping (thus, anything else but sequential)

— Realizations for random variables are generated by utilizing
(pseudo ) random number generators

— The realization of the process is constructed from event to event
(discrete event simulation )
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Discrete event simulation (1)

* ldea: simulation evolves from event to event
— If nothing happens during an interval, we can just skip it!
* Event classes :
— basic events modifying (somehow) the state of the system
* e.g. arrivals and departures of customers in a simple teletraffic model
— extra events related to the data collection
* including the event for stopping the simulation run
— Inside these event classes, there are various event types
* Event identification:
— occurrence time (when) and
— event type (what)
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Discrete event simulation (2)

» Events are organized as an event list
— Events in this list are ordered (ascendingly) by the occurrence time
« first: the event occurring next
— Events are handled one-by-one (in this order)
e Simulation clock tells the occurrence time of the next event
— progressing by jumps
» System state tells the current state of the system
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Discrete event simulation (3)

» General algorithm for a single simulation run
1 Initialization
» simulation clock = 0
» system state = given initial value
» for each event type, generate next event (whenever possible)
» construct the event list from these events
2 Event handling
» simulation clock = occurrence time of the next event
» handle the event including
— generation of new events and their addition to the event list
— updating of the system state
» delete the event from the event list
3 Stopping test
* if positive, then stop the simulation run; otherwise return to 2
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Example (1)

e Task: Simulate the M/M/1 queue (more precisely: the evolution of the
queue length process) from time O to time T assuming that the queue is
empty at time 0 and omitting any data collection

— System state (at time t) = queue length X;
« initial value: X; =0
— Basic events:
e customer arrivals
e customer departures
— Extra event:
 stopping of the simulation run at time T
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Example (2)

Initialization:
— initialize the system state: X, =0
— generate the time till the first arrival from the EXp(\) distribution
Handling of an arrival event (occurring at some time t):
— if X; =0, then
generate the time till the next departure from the Exp(t) distribution
— generate the time till the next arrival from the ExXp(A) distribution
— update the system state: X, =X, + 1
Handling of a departure event (occuring at some time t):
— update the system state: X, =X, — 1
— it X; >0, then
generate the time till the next departure from the Exp(l) distribution
Stopping test: t > T
17

Example (3)

generation of the events
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Generation of realizations of random variables

» Based on random number generators
» First step:

generation of independent U(0,1) distributed random variables

+ Step from the U(0,1) distribution to the desired distribution:

rescaling (O U(a,b)
discretization ([J Bernoulli(p), Bin(n,p), Poissond), Geom§))
inverse transform (OO ExXp(\))

other transforms (O N(0,1)J N(u,02))

acceptance-rejection method (for any continuous random variable defined
in a finite interval whose density function is bounded)

« two independent U(0,1) distributed random variables needed
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Random number generator

Random number generator is an algorithm generating (pseudo)
random integers Z; in some interval 0,1,...,m-1

The resulting numbers Z; are called (pseudo ) random numbers

The sequence generated is always periodic
(goal: this period to be as long as possible)

Strictly speaking, the numbers generated are not random at all,
in the sense of being unpredictable (thus: pseudo)

In practice, however, the numbers “appear” to be 11D with uniform
distribution, provided that the random number generator is designed
carefully

Validition of a random number generator can be based on empirical
(statistical) and theoretical tests:

uniformity of the generated empirical distribution
independence of the generated random numbers
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Random number generator types

Linear congruential generator
— most simple

— next random number is based on just the current one: Z,,; = f(Z,)

[] period at most m

Multiplicative congruential generator

— a special case of the first type
Additive congruential generators
Shuffling, etc.
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Linear congruential generator (LCG)

Linear congruential generator  (LCG) uses the following algorithm to
generate random numbers belonging to {0,1,..., m—1}:

Zi 1 = (aZ +c) modm

— Here a, c and mare fixed non-negative integers (a<m, ¢ <m)
— In addition, the starting value (seed) Z, < mshould be specified
Remarks:

— Parameters a, c and mshould be chosen with care,
otherwise the result can be very poor

— By aright choice of parameters,
it is possible to achieve the full period m

« e.9g.m=2° codd, a=4k+1
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Multiplicative congruential generator (MCG)

Multiplicative congruential generator  (MCG) uses the following
algorithm to generate random numbers belonging to {0,1,..., m-1}:

Zi+1 =(aZ) modm

— Here aand mare fixed non-negative integers (a < m)

— In addition, the starting value (seed) Z, < mshould be specified
Remarks:
MCG is clearly a special case of LCG: ¢c=0

Parameters a and m should (still) be chosen with care
In this case, it is not possible to achieve the full period m

« e.g. if m=2° then the maximum period is 2772
However, for m prime , period m—1 is possible (by a proper choice of a)
* PMMLCG = prime modulus multiplicative LCG
« e.g.m=2%-1and a=16,807(or 630,360,01F 24




U(0,1) distribution

« Let Zdenote a (pseudo) random number belonging to {0,1,..., m-1}
* Then (approximately)

_Z -
U=2= U(0,1)
25
U(a,b) distribution

 LetUOU(0,1)
Then

X =a+(b—-a)u OU(a,b)

e This is called the rescaling method
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Discretization method

Let U OU(O,1)

Assume that Y'is a discrete random variable
— with value set S={0,1,...,n} or S={0,1,2,...}

Denote: F(X) = P{Y < x}

Then

X =min{x0S|F(x) =U} OY

This is called the discretization method (cf. inverse transform method)
Example : Bernoulli(p) distribution
[0, ifU<l-p

X = [IBernoulli
ifU>1-p (P)
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Inverse transform method

Let U OU(O,1)

Assume that Y is a continuous random variable
Assume further that F(X) = P{Y < X} is strictly increasing
Let F~1(y) denote the inverse of the function F(X)

Then

X =F U)oy

This is called the inverse transform method
Proof: Since P{U < u} = u for all u, we have

P{X <x =P{FU)<x =P{U<F(X)}=F(x)
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Exp(A) distribution

Let U OU(O,1)
— Then also 1-U 0U(0,1)

Let Y OEXpQ)

— F(X) =P{Y<x} = 1-eis strictly increasing

— The inverse transform is F71(y) = —=(1/A) log(1-y)
Thus, by the inverse transform method,

X =F(1-U)=-1logU) OExp(A)
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N(0,1) distribution

Let U; OU(0,1)and U, 0U(O,1) be independent

Then, by so called Box-Muller method,
the following two (transformed) random variables are independent and

identically distributed obeying the N(0O,1) distribution:
X1 =./-2logUq) sin(21J 5) ON(0,0)
X5 =./-2logU;) cos@rt) ) OIN(0,)
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N(p,02) distribution

« Let XON(0,1)
* Then, by the rescaling method,

Y = g+ 0X ON(y,02)
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Collection of data

» Our starting point was that simulation is needed to estimate the value,
say d, of some performance parameter

— This parameter may be related to the transient or the steady-state
behaviour of the system.

— Examples 1 & 2 (transient phase characteristics)
« average waiting time of the first k customers in an M/M/1 queue
assuming that the system is empty in the beginning
« average queue length in an M/M/1 queue during the interval [0, T]
assuming that the system is empty in the beginning
— Example 3 (steady-state characteristics)
* the average waiting time in an M/M/1 queue in equilibrium

« Each simulation run yields one sample, say X, describing somehow the
parameter under consideration

» For drawing statistically reliable conclusions,
multiple samples, X;,...,X,, are needed (preferably 1ID) 33

Transient phase characteristics (1)

 Example 1:

— Consider e.g. the average waiting time of the first k customers in an M/M/1
gueue assuming that the system is empty in the beginning

— Each simulation run can be stopped
when the kth customer enters the service

— The sample X based on a single simulation run is in this case:

k
X= 2 W
=1

« Here W, = waiting time of the ith customer in this simulation run

e Multiple 1ID samples, Xl,...,)%, can be generated by the
method of independent replications:
— multiple independent simulation runs (using independent random numbers)
34




Transient phase characteristics (2)

Example 2:

— Consider e.g. the average queue length in an M/M/1 queue during the
interval [0,T] assuming that the system is empty in the beginning

— Each simulation run can be stopped at time T (that is: simulation clock = T)
— The sample X based on a single simulation run is in this case:

.
X =4 _gQ(t)dt

« Here Q(t) = queue length at time t in this simulation run
 Note that this integral is easy to calculate, since Q(t) is piecewise
constant
Multiple 1ID samples, X4,...,X,, can again be generated by the method
of independent replications
35

Steady-state characteristics (1)

Collection of data in a single simulation run can typically (but not
always) be done only after a warm-up phase (hiding the transient
characteristics) resulting in

— overhead

— bias in estimation

— need for determination of a sufficiently long warm-up phase
Multiple samples, X4,...,X,, may be generated by the following three
methods:

— independent replications

— batch means

— regenerative method
The first two methods require a warm-up phase,
but the last one (that is: regenerative method) does not

36




Steady-state characteristics (2)

* Method of independent replications
— multiple independent simulation runs (using independent random numbers)

— each simulation run includes the warm-up phase [ inefficiency
— samples IID [ accuracy
* Method of batch means :

— one (very) long simulation run divided (artificially) into one warm-up phase
and n equal length periods (each of which represents a single simulation
run)

— only one warm-up phase [ efficiency
— samples only approximately IID [J inaccuracy, choice of n
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Steady-state characteristics (3)

* Regenerative method :
— possible only if the traffic process is a regenerative stochastic process

» GJ/G/1 queue (and, thus also M/M/1 and M/G/1) is regenerative
(a new cycle starts whenever a new customer arrives in an empty
system)

« all Markov processes are regenerative
(a new cycle starts whenever the process enters some fixed state)

— one (very) long simulation run divided into n IID cycles (each of which
represents a single simulation run)

— no warm-up phase [ efficiency

— samples IID [ accuracy

— the problem is that the cycle lengths , which are random variables, can be
(much too) long L1 inefficiency
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Parameter estimation

As mentioned, our starting point was that simulation is needed to
estimate the value, say a, of some performance parameter

Each simulation run yields a (random) sample, say X;,
describing somehow the parameter under consideration

— Sample X; is called unbiased if E[X;] = o
Denote the sample average by

Xn i=ﬁZi”=1Xi

Assuming that the samples X; are 1ID with mean a and variance 0?2,
the sample average is unbiased and consistent estimator of , since

E[Xn] =23 LE[X]=a

D[ Xp] =nlzZi”=1D2[Xi] =10 .0 (@n- )




Example

» Consider the average waiting time of the first 25 customers in an M/M/1
queue with load p = 0.9 assuming that the system is empty in the
beginning

— Theoretical value: a =2.12
— Samples X; from ten simulation runs (n = 10):
« 1.05, 6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82, 0.41, 1.31

— Sample average (point estimate for ):

Xn =13 Xj =15(1.05+6.44+...+1.31) =198
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Confidence interval (1)

« Definition : Interval ()?n -y, )?n +y) is called the confidence interval
for the sample average at confidence level 1 -3 if

Pl Xp-alsy}=1-8

— ldea: “with probability 1 — 3, the parameter a belongs to this interval”
« Assume then that samples X, i = 1,...,n, are IID with unknown mean o
but known variance g2
» By the Central Limit Theorem (see Lecture 5, Slide 48), for large n,
Xn -a

L= ol/n

~ N(0,))
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Confidence interval(2)

Let z, denote the p-fractile of the N(O,1)distribution

— Thatis: P{Z< 2z} =p, where ZN(0,1)

— Example: for =5%(1-B=95% U z,_pp) = % 975~ 1.96= 2.0
Proposition : The confidence interval for the sample average at
confidence level 1 — (B is

Xntz

1_

ggj%

Proof : By definition, we have to show that

_ oy ia
Pl Ry~akz_g LR} =1-p
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Pl Xn-alky=1-8

|Xn—-al Y v\ —-q_
= B ol/~/n SJ/ﬁ}_l B

-y _Xp—@a Y 1 _1_
- P{alﬁsa/\msa/\m}_l B

- O ) -0( ) =1-8 [®(x) = P{Z < ¥]

= () --0(_ ) =1-F  [P(-x) =1-(x)]

- oY y=1-4

gl/n 2
y _
ol/+/n Zl—'g
4:>y=

N
=

1-
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Confidence interval (3)

In general, however, the variance 02 is unknown
(in addition to the mean Q)

It can be estimated by the sample variance :

2._ v \2 — 2 v 2
St =Ly L (Xi = Xp) =L (3 X -nX{)

It is possible to prove that

the sample variance is an unbiased and consistent estimator of 02

E[St]=0°
D*[S3] - 0 (n - )

45

Confidence interval (4)

Assume that samples X; are 1ID obeying the N(a,02) distribution
with unknown mean o and unknown variance G2

Then it is possible to show that
T — Kn -a
=5,/ n
Let t,,_; , denote the p-fractile of the Student(—1) distribution
— Thatis: P{T<t,_; ;} =p where T Studentf-1)
— Example 1: n=10and 3 = 5%, t,,_; 1_(p/2) = tg 0,975~ 2.26= 2.3
— Example 2: n=100and B = 5%, t,_; 1_/2) = tgg 0.975~ 1.98= 2.0

[Student(—-1)

Thus, the confidence interval for the sample average at confidence

level 1 — [3 is now as follows:

X+
Xn _tn—],l—'g Qj%
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Example (continued)

» Consider the average waiting time of the first 25 customers in an M/M/1
queue with load p = 0.9 assuming that the system is empty in the
beginning

— Theoretical value: a =2.12
— Samples X; from ten simulation runs (n = 10):

 1.05,6.44, 2.65, 0.80, 1.51, 0.55, 2.28, 2.82,0.41, 1.31
Sample average = 1.98 and the square root of the sample variance:

Sn=1((L05-198)%+...+(131-198)%) =1.78

— So, the confidence interval (that is: interval estimate for 0) at confidence
level 95%is

— A8 — —
SENY 1 =1.98+2.260:78=198+127=(0.71329
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Observations

» Simulation results become more accurate (that is: the interval estimate
for a becomes narrower) when
— the number n of simulation runs is increased, or
— the variance 02 of each sample is reduced

* Given the desired accuracy for the simulation results,
the number of required simulation runs can be determined dynamically
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