lect10.ppt

S-38.145 - Introduction to Teletraffic Theory - Fall 2000

1

10. Network planning and dimensioning

Contents

- Introduction
- Network planning
- Traffic forecasts
- Dimensioning

Telecommunication network

- A simple model of a telecommunication network consists of
 - nodes
 - terminals
 - network nodes

Ο

- links between nodes
- Access network
 - connects the terminals to the network nodes
- Trunk network
 - connects the network nodes to each other

10. Network planning and dimensioning

Why network planning and dimensioning?

• "The purpose of dimensioning of a telecommunications network is to ensure that

the expected needs will be met in an economical way

both for subscribers and operators."

Contents

- Introduction
- Network planning
- Traffic forecasts
- Traffic dimensioning

5

Network planning in a stable environment (2)

- Traffic aspects
 - Data collection (current status)
 - traffic measurements
 - subscriber amounts and distribution
 - Forecasting
 - service scenarios
 - traffic volumes and profiles
- Economical aspects
- Technical aspects
- Network optimisation and dimensioning
 - hierarchical structure and topology
 - traffic routing and dimensioning
 - circuit routing

Source: [1]

7

Network planning in a turbulent environment (1)

- Additional decision data are needed from the following areas:
 - The market, with regard to a specific business concept
 - due to competition!
 - operator's future role (niche): dominance/co-operation
 - Customer demands:
 - new services: Internet & mobility (first of all)
 - new business opportunities
 - Technology:
 - new technology: ATM, xDSL, GSM, CDMA, WDM
 - Standards:
 - new standards issued continuously
 - Operations and network planning support:
 - new computer-aided means
 - Costs:
- Source: [1] trends: equipment costs going down, staff costs going up

9

- Safeguards for the operator:
 - Change the network architecture so that it will be more open, with generic platforms, if possible
 - Build the network with a certain prognosticated overcapacity (redundancy) in generic parts where the marginal costs are low
- New planning situation (shift of focus to a strategic-tactical approach):

- Introduction
- Network planning
- Traffic forecasts
- Traffic dimensioning

Need for traffic measurements and forecasts

• To properly dimension the network we need to

estimate the traffic offered

- If the network is already operating,
 - the current traffic is most precisely estimated by making traffic measurements
- Otherwise, the estimation should be based on other information, e.g.
 - estimations on characteristic traffic generated by a subscriber
 - estimations on the number of subscribers
- Long time-span of network investments ⇒
 - it is not enough to estimate only the current traffic
 - forecasts of future traffic are also needed

10. Network planning and dimensioning

Characteristic traffic

- Here are typical characteristic traffics for some subscriber categories (of ordinary telephone users):
 - private subscriber: 0.01 0.04 erlangbusiness subscriber: 0.03 0.06 erlang
 - private branch exchange (PBX):
 - pay phone: 0.07 erlang
- This means that, for example,
 - a typical private subscriber uses from 1% to 4% of her time in the telephone (during so called "busy hour")

0.10 - 0.60 erlang

- Referring to the previous example, note that
 - it takes between 2250 9000 private subscribers to generate 90 erlang traffic

Traffic forecasting

- Information about future demands for telecommunications
 - an estimation of future tendency or direction
- Purpose
 - provide a basis for decisions on investments in network
- Forecast periods
 - time aspect important (reliability)
 - need for forecast periods of different lengths

Source: [1]

15

Forecasting methods

- Trend methods
 - linear extrapolation
 - nr of subscribers increased yearly by about 200 in the past 5 years
 ⇒ 3 * 200 = 600 new subscribers in the next 3-year period
 - not suitable if growth is exponential
- Statistical demand analysis
 - network operator seeks to map out those factors that underlie the earlier development
 - changes that can be expected during the forecasting period are then collated
- Analogy method
 - situations or objects with similar preconditions will develop similarly

Source: [1]

17

10. Network planning and dimensioning

Traffic forecast

- Traffic forecast defines
 - the estimated traffic growth in the network over the planning period
- Starting point:
 - current traffic volume during busy hour (measured/estimated)
- Other affecting factors:
 - changes in the number of subscribers
 - change in traffic per subscriber (characteristic traffic)
- Final result (that is, the forecast):
 - traffic matrix describing the traffic interest between exchanges (traffic areas)

Traffic matrix

- The final result of the traffic forecast is given by a traffic matrix
- Traffic matrix T = (T(i,j))
 - describes traffic interest between exchanges
 - N^2 elements (N = nr of exchanges)
 - element T(i,i) tells the estimated traffic within exchange i
 - element T(i,j) tells the estimated traffic from exchange i to exchange j
- Problem:
 - easily grows too big: 600 exchanges \Rightarrow 360,000 elements!
- Solution: hierarchical representation
 - higher level: traffic between traffic areas
 - lower level: traffic between exchanges within one traffic area

10. Network planning and dimensioning

Example (1) Data: There are 1000 private subscribers and 10 companies with their own PBX's in the area of a local exchange. The characteristic traffic generated by a private subscriber and a company are estimated to be 0.025 erlang and 0.200 erlang, respectively. Questions: What is the total traffic intensity *a* generated by all these subscribers? What is the call arrival rate *b* assumed that the mean holding time is 3

- What is the call arrival rate λ assumed that the mean holding time is 3 minutes?
- Answers:
 - a = 1000 * 0.025 + 10 * 0.200 = 25 + 2 = 27 erlang
 - $h = 3 \min$
 - $\lambda = a/h = 27/3$ calls/min = **9 calls/min**

Example (2)

• Data:

- In a 5-year forecasting period the number of new subscribers is estimated to grow linearly with rate 100 subscribers/year.
- The characteristic traffic generated by a private subscriber is assumed to grow to value 0.040 erlang.
- The total nr of companies with their own PBX is estimated to be 20 at the end of the forecasting period.

• Question:

- What is the estimated total traffic intensity *a* at the end of the forecasting period?
- Answer:

_

a = (1000 + 5*100)* 0.040 + 20* 0.200 = 60 + 4 = 64 erlang

- Assume further that one half of the traffic generated by a local exchange is local traffic and the other half is directed uniformly to the two other exchanges.
- Question:
 - Construct the traffic matrix T describing the traffic interest between the exchanges at the end of the forecasting period.

area	1	2	3	sum
1	32	16	16	64
2	16	32	16	64
3	16	16	32	64
sum	64	64	64	192

Contents

- Introduction
- Network planning
- Traffic forecasts
- Traffic dimensioning

23

10. Network planning and dimensioning

• Basic task in traffic dimensioning:

Determine the minimum **system capacity** needed in order that the incoming **traffic** meet the specified **grade of service**

Traffic dimensioning (2)

- Observation:
 - Traffic is varying in time
 - General rule:
 - Dimensioning should be based on peak traffic not on average traffic
- However,
 - Revenues are based on average traffic
- For dimensioning (of telephone networks), peak traffic is defined via the concept of busy hour:

Busy hour ≈ the continuous 1-hour period for which the traffic volume is greatest

Two kinds of traffic processes

- Traffic process in each network node
 - due to call establishments
 - during the call establishment phase
 - each call needs (and competes for) processing resources in each network node (switch) along its route
 - it typically takes **some seconds** (during which the call is processed in the switches, say, **some milliseconds**)
- Traffic process in each link
 - due to information transfer
 - during the information transfer phase
 - each call occupies one channel on each link along its route
 - information transfer lasts as long as one of the participants disconnects
 - ordinary telephone calls typically hold some minutes
- Note: totally different time scales of the two processes

- Call (request) arrival process is modelled as
 - a Poisson process with intensity $\boldsymbol{\lambda}$
- Further we assume that call processing times are
 - IID and exponentially distributed with mean s
 - typically *s* is in the range of **milliseconds** (not minutes as *h*)
 - *s* is more a **system parameter** than a traffic parameter
- Finally we assume that the call requests are processed by
 - a single processor with an infinite buffer
 - 1/s tells the processing rate of call requests
- · The resulting traffic process model is
 - the **M/M/1 queueing model** with traffic load $\rho = \lambda s$

Traffic process during call establishment (3)

Pure delay system ⇒

Grade of Service measure = Mean waiting time E[W]

• Formula for the mean waiting time E[W] (assuming that $\rho < 1$):

$$E[W] = s \cdot \frac{\rho}{1 - \rho}$$

- $\rho = \lambda s$
- Note: E[W] grows to infinity as ρ tends to 1

Dimensioning rule

• To get the required Grade of Service (the average time a customer waits before service should be less than the average service time) ...

... Keep the traffic load less than 50%

• If you want a less stringent requirement, still remember the **safety margin** ...

Don't let the total traffic load approach to 100%

• Otherwise you'll see an explosion!

Node 1:

Example (2)

- call requests from own area: [T(1,1) + T(1,2) + T(1,3)]/h= 90/3 = 30 calls/min
- call requests from area 2: T(2,1)/h = 30/3 = 10 calls/min
- call requests from area 3: T(3,1)/h = 30/3 = 10 calls/min
- total call request arrival rate: $\lambda(1) = 30+10+10 = 50$ calls/min
- required call handling capacity: $\rho(1) = \lambda(1)/\mu(1) = 0.5 \Rightarrow$ $\mu(1) \ge 2*\lambda(1) = 100 \text{ calls/min}$

35

10. Network planning and dimensioning

60

60

240

120

sum

Traffic process during information transfer (2)

- Call arrival process has already been modelled as
 - a Poisson process with intensity λ
- Further we assume that call holding times are
 - IID and generally distributed with mean h
 - typically *h* is in the range of **minutes** (not milliseconds as *s*)
 - h is more a traffic parameter than a system parameter
- The resulting traffic process model is
 - the **M/G/n/n loss model** with (offered) traffic intensity $a = \lambda h$

Traffic process during information transfer (3)

• Pure loss system \Rightarrow

Grade of Service measure = Call blocking probability B

• Erlang's blocking formula:

$$B = \operatorname{Erl}(n, a) = \frac{\frac{a^n}{n!}}{\sum_{i=0}^{n} \frac{a^i}{i!}}$$

-
$$a = \lambda h$$

- $n! = n(n-1)(n-2) \dots 1$

0	n
3	ч
-	-

10. Network planning and dimensioning

Grade of Service requirement: B ≤ 1%
 ⇒ Required link capacity: n = min{i = 1,2,... | Erl(i,a) ≤ B}

Example (1)

area	1	2	3	sum	
1	60	15	15	90	
2	30	30	15	75	
3	30	15	30	75	
sum	120	60	60	240	

Assumptions:

- 3 local exchanges completely connected to each other with two-way links
- Traffic matrix *T* describing the busy hour traffic interest (in erlangs) given below
- Fixed (direct) routing: calls are routed along shortest paths.
- Mean holding time h = 3 min.

Task:

- Dimension trunk network links according to the GoS requirement $B \le 1\%$

41

Link 1-3:

Example (3)

- total offered traffic: a(1-3) = T(1,3) + T(3,1)= 15+30 = 45 erlang
- required capacity: $n(1-3) \ge \min\{i \mid \operatorname{Erl}(i,45) \le 1\%\}$ $\Rightarrow n(1-3) \ge 58 \text{ channels}$

Link 2-3:

- total offered traffic: a(2-3) = T(2,3) + T(3,2)= 15+15 = 30 erlang
- required capacity: $n(2-3) \ge \min\{i \mid \operatorname{Erl}(i,30) \le 1\%\}$ $\Rightarrow n(2-3) \ge 42 \text{ channels}$

43

Table: $B = Erl(n,a)$						
•	B =	= 1%		• <i>B</i> :	= 1%	
	_	<i>n</i> :	<i>a</i> :	-	<i>n</i> :	<i>a</i> :
	_	35 channels	24.64 erlang	_	50 channels	37.91 erlang
	_	36 channels	25.51 erlang	-	51 channels	38.81 erlang
	_	37 channels	26.38 erlang	-	52 channels	39.71 erlang
	_	38 channels	27.26 erlang	_	53 channels	40.61 erlang
	_	39 channels	28.13 erlang	_	54 channels	41.51 erlang
	_	40 channels	29.01 erlang	-	55 channels	42.41 erlang
	_	41 channels	29.89 erlang	-	56 channels	43.32 erlang
	_	42 channels	30.78 erlang	-	57 channels	44.23 erlang
	_	43 channels	31.66 erlang	_	58 channels	45.13 erlang
	_	44 channels	32.55 erlang	-	59 channels	46.04 erlang
	—	45 channels	33.44 erlang	-	60 channels	46.95 erlang

End-to-end blocking probability

- Thus far we have concentrated on the single link case, when calculating the call blocking probability B_c
- However, there can be many (trunk network) links along the route of a (long distance) call. In this case it is more interesting to calculate the total **end-to-end blocking probability** B_e experienced by the call. A method (called **Product Bound**) to calculate B_e is given below.
- Consider a call traversing through links j = 1, 2, ..., J. Denote by $B_c(j)$ the blocking probability experienced by the call in each single link j. Then

$$B_{\rm e} = 1 - (1 - B_{\rm c}(1)) * (1 - B_{\rm c}(2)) * \dots * (1 - B_{\rm c}(J))$$

$$B_{\rm c}(j)$$
's small $\Longrightarrow B_{\rm e} \approx B_{\rm c}(1) + B_{\rm c}(2)) + \ldots + B_{\rm c}(J)$

- 4	_
	-
-	-

Literature

- 1 A. Olsson, ed. (1997)
 - "Understanding Telecommunications 1"
 - Studentlitteratur, Lund, Sweden
- 2 A. Girard (1990)
 - "Routing and Dimensioning in Circuit-Switched Networks"
 - Addison-Wesley, Reading, MA

