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Teletraffic model of a circuit switched network (1)

Consider a circuit switched

network B
— e.g. atelephone network 0O
e Traffic:
— telephone calls
— each (carried) call occupies one
channel on each link among its A
route
e System:
— telephone machines (terminals)
— exchanges (network nodes)
— access links (from terminals to
exchanges)
— trunks (between exchanges)
Teletraffic model of a circuit switched network (2)
e Quality of service: 5

— described by the end-to-end
call blocking probability O
(prob. that a desired connection
cannot be set up due to
congestion along the route of
the connection)

In our model we assume that A

— the network nodes and the
whole access network are non-
blocking

Thus, a call is blocked

— if and only if all channels are
occupied in any trunk network
link along the route of that call




Linksj=1,...,.J

In our model,
— all links are two-way (why?)

We index the links in the trunk
network by

- j=1,...3
In the example on the right:
- J=6

Let

— N =nr of channels in link |
(that is: the link capacity)

Each link is modelled as a
— pure loss system

Routesr=1,....R

We define a route as a

— set of (two-way) links
connecting two network nodes

We index the routes by
- r=1,...R
In the example on the right:

— there are three routes
between nodes a and b:
{1,2}, {6,3}, {5,4,3}

- R=12+10+7+3=32
Let
- djr = 1if link ] belongs to route r

d; = O otherwise
- D=(d1j=1,..%r=1,..R




Loss network model

Note:

— End-to-end call blocking prob. is
equal for all the connections
following the same route

Thus,

— the traffic class of a connection
is determined by the route r that
the connection follows

Let

— X, = number of active
connections following route r

- X=(Xg,..XR)
Vector X is called
— the state of the system

State space S

The number of active connections X, for any traffic class r is limited by
the link capacities N, along the corresponding route r :

R
> djr% <nj forallj
r=1

The same in vector form:

D[X<n

Thus, the state space S(that is: the set of admissible states) is
S={x=0|DXx<n}

Note that, due to finite link capacities, set Sis finite




Example

« 3 links with capacities:
— link a-c: 3 channels
— link b-c: 3 channels
— link c-d: 4 channels
e 2routes:
— route a-c-d
— route b-c-d

— The other 4 routes (which?) are
ignored in this model

» State space:

— S= {
(0,0).(0,1).(0,2),(0,3),
(1,0).(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),
(3,0).3.1)}

Set S, of non-blocking states for class r

Consider
— an arriving call belonging to class r (that is: following route r)

It will not be blocked by link j belonging to route r

— if there is at least one free channel on link j:
R -
> djpX-<nj-1 forall jUr
r'=1
The same in vector form (€, being here the unit vector in direction r):

D{x+e/)<n

The set § of non-blocking states is thus

S ={x=0|DUx+e )<n}
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Set S,B of blocking states for class r

The set SB of blocking states
for class r is clearly:

S°=S\S

Summary:
— an arriving call of class r is
blocked (and lost)
if and only if the state X of the
system belongs to set SrB

Example (continued):

— The blocking states S, for
connections of class 1
(using route a-c-d) are
circulated in the figure

- SlB = { (113)1(212)1(310)1(3’1)}
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Stationary state probabilities (1)

Assume that

— new connection requests belonging to traffic class r arrive (independently)
according to a Poisson process with intensity A,

— call holding times independently and identically distributed with mean h
Denote

— &, = Ah (traffic intensity for class r)
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Stationary state probabilities (2)

» Then itis possible to show that
— the stationary state probability Ti(X) for any state X [J Sis as follows:

R
-1
7(x)=G “] fr (%)
r=1
where G is a normalizing constant:

R
G=73 1 fr(x)

xtSr=1
and the functions f,(X,) are defined as follows:
X
_aT
fr(Xr) =

X!
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Stationary state probabilities (3)

* Probability TqX) is said to be of product-form
— However, the number of active connections of different classes are not
independent (since the normalizing constant G depends on each X;)

— Only if all the links had infinite capacities,
all the traffic classes were independent of each other

— Thus, itis the limited resources shared by the traffic classes
that makes them dependent on each other

14




PASTA

Consider, for a while,

— any simple teletraffic model (as defined in slide 15 of lecture 1)
with Poisson arrivals

According to so called PASTA (Poisson Arrivals See Time Averages)
property,

— arriving calls (obeying a Poisson process)
see the system in the stationary state

This is an important observation
— applicable in many problems
For example,

— it allows us to calculate the end-to-end blocking probabilities in our circuit
switched network model (since we assumed that new calls arrive according
to a Poisson process)

15

End-to-end call blocking: exact formula

The probability that the system is (at an arbitrary time) in such a state
that it cannot accept any more connections of type r (that is: the end-to-
end time blocking probability for class r) is clearly given by the sum

> 7(X)
xI]SrB

But, due to the PASTA property, the end-to-end call blocking probability
B, is equal to the corresponding end-to-end time blocking probability:

Br= 5 7(X)
xOSP
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Example

» Consider the example presented in slide 9 (and continued in slide 11)
 The end-to-end blocking probability B, for class 1 will be

By = m(1,3) + 1(2,2) + 7(3,0) + 1(3,1) =
aja; al a3 i E+ é E
13 2121 I

PABB BRI RET
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Approximative methods

e In practice,
— itis extremely hard (even impossible) to apply the exact formula

— This is due to the so called state space explosion :
there are as many dimensions in the state spaces as
there are routes in our model
O exponential growth of the state space

* Thus, approximative methods are needed

— Below we will present (the simplest) one of them

e Product Bound method

— estimate first blocking probabilities in each separate link
(common to all traffic classes)

— calculate then the end-to-end blocking probabilities for each class
based on the hypothesis that “blocking occurs independently in each link”
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Product Bound (1)

« Consider first the blocking probability B(j) in an arbitrary link |
— Let R(j) denote the set of routes that use link |
« If the capacities of all the other links (but j) were infinite,

— link j could be modelled as a loss system where new calls arrive according
to a Poisson process with intensity A(j),

A= 3 A
rdRrR(j)
— In this case, the blocking probability could be calculated from formula
B(j)=Er(nj, 3 a)
roOR(j)

— Note that this is really an approximation, since the traffic offered to link | is
smaller due to blockings in other links (and not even of Poisson type).
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Product Bound (2)

» Consider then the end-to-end call blocking probability B, for class r
— Let J(r) denote the set of the links that belong to route r

— Note that an arriving call of class r will not be blocked,
if it is not blocked in any link j 1 J(r)

» If blocking would occur independently in each link,
— an arriving call of class r would be blocked with probability

Br =1-[] jDJ(r)(l_ B(j))

— Note that for (very) small values of B(j)’s, we can use the following
approximation:

Br =3 joacr)BU)
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Teletraffic model of a connectionless packet switched network

(1)

e Consider a connectionless
packet switched network
— e.g. an Internet subnetwork
e Traffic:
— data packets

— identified by their source (A) and
destination (B)

e System:
— workstations & servers
(terminals)
— routers (network nodes)

— access links
(from terminals to routers)

— trunks (between routers)
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Teletraffic model of a connectionless packet switched network

(2)

e Quality of service:

— described by the average end-
to-end delay (the mean time to
get from the source (A) to the
destination (B))

« However, in our model

— We restrict ourselves to the
average trunk network delay
(the mean time to get from the
source router (a) to the
destination router (b))

— implicitly, we assume that the
delay due to access network is
negligible (or, at least, almost
deterministic)
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Delay components

e Trunk network delay consists of

— propagation delays (in links)

— transmission delays (in links)

— processing delays (in nodes)

— queueing delays (before transmission and before processing)
* Note that

— propagation and transmission delays are deterministic,

— processing delays might be random, and

— queueing delays are surely random
e |n our model,

— we will take into account the transmission and the related queueing delays

— but we will ignore the propagation delays in links and the delays in nodes
(the processing and the related queueing delays)
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Linksj=1,...,.J

e In this case we separate the
directions so that

— all links are one-way (why?)

* We index the links in the trunk
network by

- j=1..3
* Inthe example on the right:
- J=12
* Let
— G, = capacity of link j (in bps)
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Routesr=1,....R

« We define here a route as an

— ordered set of (one-way) links
connecting two network nodes
(called origin and destination)

* We index the routes by
- r=1..R
* Inthe example on the right:

— there are three routes
from node a to node b:
(1,3), (11,6), (10,8,6)

— for these routes,
node a is the origin and
node b is the destination

— R=2[{12+10+7+3) =64
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Individual link model

Each link is modelled as a
— pure waiting system (with a single server and an infinite buffer)
Let
- )\j = arrival rate of packets to be transmitted on link j (in packets/s)
— L = mean packet length (in bits)

— 1/y; = L/C; = average packet transmission time on link j (in seconds)

« Stability requirement: )\j <

C/L
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Packet arrival rates in links

Let
— A(r) = arrival rate of packets following route r
— R(j) = the set of routes that use link j

It follows that

A= 3 A0)
rOR(j)
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Queueing network model

* Note:

— Average end-to-end delay is
equal for all the packets
following the same route

 Thus,

— the traffic class of a packet is
determined by the route r that
the connection follows
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State space S

* Let

— X = nr of packets in queue |
(including the packet being transmitted (if any))

= X=X Xy)
* Vector X is called the state of the system

— A more detailed state description (including the position and traffic class of
each packet in the whole system) is not needed under the assumptions that
we will make later!

* In this case,
— Xcan have any non-negative value

e Thus, the state space Sis

S={x=0}

« Note that, set Sis now infinite 20




Example

e 2links:
— link a-b 1 5
— link b-c [a]TIO—>[b]|TIO—>[c]
e 3routes:
— route a-b
— route b-c 24
— route a-b-c

3
» State space: /./ S
X, 2|0 o o o
~ s={ 2

(0,0), }'7. o o o o
(1,0),(0,1), 0o o o o o
(2,0),(1,1),(0,2), 012 3 4
(3i0),(2,1),(1,2),(0,3), X1201_J\ X,
13(220)
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Stationary link state probabilities (1)

¢ Assume that

— new packets following route r arrive (independently)
according to a Poisson process with intensity A(r)

— packet lengths are independently and exponentially distributed
with mean L

* |t follows that

— new packets to be transmitted on link j arrive (independently)
according to a Poisson process with intensity )\j, where

Aj= 3 AN
raR(j)

— packet transmission times are independently and exponentially distributed
with mean 1/; = L/C;
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Stationary link state probabilities (2)

e Assume further that

— the system is stable : A; < for all |

— packet length is independently redrawn (from the same distribution)
every time the packet moves from one link to another

» This is so called Kleinrock’s independence assumption
* Under these assumptions, it is possible to show that
— the stationary state probability T1(X) for any state X [J Sis as follows:

J
7(x)=[1@-pj)p;

=1
where g denotes the traffic load of link j:
Aj AL
pJ = ‘= <1
Hi Cj
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Stationary link state probabilities (3)

 Probability T(X) is again said to be of product-form
— Now, the number of packets in different queues are independent (why?)

« Each individual queue j behaves as an M/M/1 queue
— Number of packets in queue | follows a geometric distribution with mean
_ Jox
X = L
1- :0]
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Average trunk network delay

Consider then the average trunk network delay for class r
— Let J(r) denote the set of the links that belong to route r

In our model, the average trunk network delay will be

— the sum of average delays experienced in the links along the route
(including both the transmission delay and the queueing delay)

By Little’s formula, the average link delay is
X5 1 - 1
TJ = J = [ pl =
Aj A 1=pj Hj-4

Thus, the average trunk network delay for class r is

T(r= Y T;= % 1

j A
joa(r) jog(r) K177
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THE END
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