5. Basic probability theory

Additional literature available on the web

http://www.dartmouth.edu/~chance/teaching_aids/probability _book/book.html
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Sample space, sample points, events

Sample space Q is the set of all possible sample points  [1 Q
— Example 0. Tossing a coin: Q = {H, T}
— Example 1. Rolling a die: Q ={1,2,3,4,5,6}
— Example 2. Number of customers in a queue: Q ={0,1,2,...}
— Example 3. Call holding time: Q = {x O O | x> 0}
Events A,B,C,... Q are (measurable) subsets of the sample space Q
— Example 1. Even numbers of a die: A ={2,4,6}
— Example 2. No customers in a queue: A = {0}
— Example 3. Call holding time greater than 3.0 (min): A={x 0 O | x> 3.0}
Denote by 7 the set of all events A L1 #
Sure event : The sample space Q [ 7 itself

Impossible event : The empty set L1 [1J




Combination of events

e Union “A or B™: AOB={wOQ|wOAorwlB}
e Intersection “Aand B”: AnB={wOQ|wOAandw B}
« Complement “not A”: AC={w0Q|wlA}
e Events A and B are disjoint if

— AnB=1

« Asetofevents {Bq, B, ...} is a partition of event A if
- () BjnBj=0Uforalli #]
~ (i)0,B=A A

Probability

« Probability of event Ais denoted by P(A), P(A) 1 [0,1]

— Probability measure P is thus
a real-valued set function defined on the set of events J, P: § — [0,1]

* Properties :
- () 0sPA)=<1
- (i) P@=0
- (i) P(Q)=1
- (iv) P(A®)=1-P(A)
- (vy P(AOB)=P(A) +P(B)-PANB)
— (vi) AandBaredisjoint0  P(A B) =P(A) + P(B)
— (vii) {B} is apartition of AD P(A) =2, P(B))
- (viii) ADBO P(A) < P(B)




Conditional probability

Assume that P(B) >0

Definition : The conditional probability  of the event A
given that the event B occurred is defined as

P(An B)

P(A|B) = Pg]

It follows that

P(An B)=P(B)P(A|B)=P(A)P(B|A)

Theorem of total probability

Let {B;} be a partition of the sample space Q
It follows that { A n B;} is a partition of the event A. Thus (by slide 6)

(vii)
P(A) = >;P(AnB)

Assume further that P(B;) > Ofor all i. Then (by slide 7)

P(A)=%; P(B)P(A[B)

This is the theorem of total probability




Bayes’ theorem

« Let{B;} be a partition of the sample space Q
« Assume that P(A) > 0and P(B;) > Ofor all i. Then (by slide 7)

| )= P(ANB) _ P(B)P(AB)
PEIA= = P

* Furthermore, by the theorem of total probability (slide 8), we get

P(B)P(AB;)
P(B | A) =
BA=5 pis;)Pas)
e This is Bayes’ theorem
— Probabilities P(B,) are called a priori probabilities of events B,

— Probabilities P(B;|A) are called a posteriori probabilities of events B,
(given that the event A occured)

Statistical independence of events

» Definition : Events A and B are independent if

P(An B) =P(A)P(B)

e |t follows that

P(AnB) _ P(A)P(B)

P(AIB)="5g "= B~ =P(A
e Correspondingly:
P(B | A) — P(An B) — P(A)P(B) — P(B)

P(A) P(A)
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Random variables

Definition : Real-valued random variable Xis a real-valued and
measurable function defined on the sample space Q, X: Q - [

— Each sample point w [ Q is associated with a real number X(w)
Measurability means that all sets of type

{X<x: HwlQ| X(w)sx 0Q

belong to the set of events 4, that is

{X<x} OF

The probability of such an event is denoted by P{ X < X}
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Example

A coin is tossed three times
Sample space:

Q={(wy, @y, w3) | LH, T}, 1=1,2,3

Random variable X tells the total number of tails in these three
experiments:

@ |HHH[HHT [HTH|[THH|[HTT [ THT [ TTH | TTT

Xw | 0 | 2| 1| 1] 2| 2] 2| 3
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Indicators of events

Let A 1 7 be an arbitrary event

Definition : The indicator of event A is a random variable defined as

follows:
Ia(w) = %

Clearly:
P{1a =1 = P(A)

wl A
wlA

P{15 =0} = P(A®) =1- P(A)
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Probability distribution function

Definition : The probability distribution function
variable Xis a function Fy: 0 — [0,1] defined as follows:

Fyx (X)=P{ X <x}

(PDF) of a random

PDF determines the distribution of the random variable,
— that is: the probabilities P{X [0 B}, where B [0 [J and {X I B} O J

Properties :

(i) Fyis non-decreasing

(it) Fyis continuous from the right
(iii) Fy(-0)=0

(iv) Fx(»)=1




Statistical independence of random variables

Definition : Random variables X and Y are independent if
for all xand y

P{X<XY<y}=P[X<xXP{Y <y}

Definition : Random variables Xy,..., X, are (totally) independent if
for all i and X;

P{X1 <X, 0s Xy £ X0} = P{X1 %4} P{ X[y £ X4}
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Maximum and minimum of independent random variables

Let the random variables X, ..., X,, be independent
Denote: XM := max{Xy,..., X,}. Then

P{XM<xt =P[{X;<X% ,Xp<x
=P{X1x}---P{ X< X
Denote: XMN := min{Xy,..., X;}. Then

PIXMN >y =P{X;>%, ,X,>x%
=P{Xy >+ P{ X > %}
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Discrete random variables

Definition : Set A 1 [J is called discrete ifitis
— finite, A= {Xy,..., X}, or
— denumerable infinite, A= {X;, X5, ...}
Definition : Random variable X is discrete if
there is a discrete set Sy U U such that

P{XOSy}=1
It follows that
- P{X=x} 20 forall xS,
- P{X=x}=0 forall xS,
The set Sy is called the value set
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Point probabilities

Let X be a discrete random variable

The distribution of X is determined by the point probabilities  p;,
P =P{X=x} % 0Sx

Definition : The probability mass function  (pmf) of X is a function

py: O — [0,1] defined as follows:

px (x) = P{X :X}:EO

PDF is in this case a step function:

Opi, X=X USx
, XDSX

Fx()=P(X<X= 3 p

11X <X
19
Example
A X A F X
B . LF X L
L - —t— N
X;  Xp XgXy X;  Xp XgXy

probability mass function (pmf)

probability distribution function (PDF)

Sk = {Xq, Xo1 X3, X4}

20




Independence of discrete random variables

» Discrete random variables X and Y are independent if and only if
for all x; [J Sxandyj OSy

PIX=%,Y =yj} = P[X =x}PY =yj}
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Expectation

» Definition : The expectation (mean value) of X is defined by

Ux =E[X]:= Y PX=xpX= % px(X)x= Zpu
XDSX XDSX

— Note 1: The expectation exists only if 2; p;|x;| <oo

— Note 2: If 2, p; X, = 0, then we may denote E[X] = oo

* Properties :
— () cO0ODO E[cX =cHX]
— (i) E[X+Y] = E[X]+E[Y]
— (i) Xand Yindependent [0 E[XY] = E[X]E[Y]
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Variance

Definition : The variance of X is defined by

0% = D?[X]:=Var[X]:= E[(X - E[X])?]

Useful formula (prove!):

D?[X] = E[X?]-E[X]?

Properties :
- () cO00O D¥cX = c?DAX]
— (i) Xand Yindependent 0 D?X+Y] = D?X] + DY]
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Covariance

Definition : The covariance between X and Y is defined by

0%y =Co X, Y] := E[(X = E[X])(Y - E[Y])]

Useful formula (prove!):

Cov[X,Y] = E[XY] - E[ X]E[Y]

Properties :
- (i) Cov[XX]=Var[X]
— (i) Cov[X,Y] = CoV[Y,X]
— (i) Cov[X+Y,Z] = Cov[X,Z] + CoV[Y,Z]

— (iv) Xand Yindependent [1 Cov[X,Y]=0
24




Other distribution related parameters

Definition : The standard deviation of Xis defined by

oy :=D[X]:=+/D?[X]

Definition : The coefficient of variation of X is defined by

D[]

Cx = C[X] = E[X]

Definition : The kth moment of X is defined by
K) ._ k
1§ = E[XX]

25

Average of IID random variables

Let Xy,..., X,, be independent and identically distributed (IID)
with mean [ and variance 0?2
Denote the average (sample mean) as follows:

- n
Xp=1 3 X
Z

Then (prove!)
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Law of large numbers (LLN)

Let Xy,..., X,, be independent and identically distributed (IID)
with mean [ and variance 0?2

Weak law of large numbers : forall€ >0

Strong law of large numbers : with probability 1

Xn - K

27
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Bernoulli distribution

X OBernoull(p), pd(0,1)

— describes a simple random experiment with two possible outcomes:
success (1) and failure (0); cf. coin tossing

— takes value 1 with probability p (and value O with probability 1 - p)
Value set: S, = {0,1}
Point probabilities:

PX=0=1-p, P[X=LF=p

Mean value: E[X] = (1 - p)0 +pd =p
Second moment: E[X2] =(1- p)[O2 + pEIL2 =p
Variance: D?[X] = E[X?] - E[X]?°=p-p?=p(1 - p)

29
Binomial distribution
X OBin(n, p), nO{42,...}, p0d(0,1)
— number of successes in an independent series of simple random
experiments (of Bernoulli type); X = X; + ... + X, (with X; OBernoulli(p))
— N =total number of experiments N |
— P = probability of success in any single experiment (i ): i'(nn.—i)'
Value set: S, ={0,1,...,n ' '
. SX .{ ) ni=nl(n-1)---201
Point probabilities:

P(x =iy = (7o' @- )
Mean value: E[X] = E[X{] + ... + E[X ] =np
Variance: D X] = D2[X1] +...0+ D2[Xn] =np(l-p) (independence!)

30




Geometric distribution

X OGeon(p), pd(01

— number of successes until the first failure in an independent series of simple
random experiments (of Bernoulli type)

— P = probability of success in any single experiment
« Valueset: 5,={0,1,...}
e Point probabilities:

P{X =i} = p'(1- p)

«  Mean value: E[X] = ¥, ip'(1 - p) = p/(1 - p)
»  Second moment: E[X?] = 3, i%/(1 - p) = 2(p/(1 - p))* + p/(1 - p)
« Variance: DX] = E[X?] - E[X]?2 = p/(1 - p)?
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Memoryless property

» Geometric distribution has so called memoryless property
foralli,j 10{0,1,...}

P{X=i+||X=i} =P{X =]}

«  Prove! (Tip: Prove first that P{X > i} = p')

32




Minimum of geometric random variables

« Let X; OGeomp,) and X, 0Geomf,) be independent . Then
XM= min{ X, X5} OGeon(p;p,)
and

mn_yqy- P
P{X™ =X} = pypy” | 0{1,2}

* Prove! (Tip: See slide 16)
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Poisson distribution

X OPoissorfa), a>0

— limit of binomial distribution as N — oo and p — 0in such a way thatnp - a
Value set: 5, ={0,1,...}
Point probabilities:

P{X =i} =2 ¢

Mean value: E[X] = a
Second moment: E[X(X-1)]=a20 E[X{=a’+a
Variance: DY X] = E[X?] - E[X]?=a

34




Example

Assume that
— 200subscribers are connected to a local exchange

— each subscriber’s characteristic traffic is 0.01
— subscribers behave independently

Then the number of active calls X [1Bin(200,0.01)

Corresponding Poisson-approximation X = Poisson(2.0)
Point probabilities:

0 1 2 3 4 5

Bin(200,0.01) .1326 .2679 .2693 .1795 .0893 .0854

Poisson(2.0)] .1358 .2701 .2701 .1104 .0902 .0B61
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Properties

(1) Sum: Let X; [JPoissond,) and X, [1Poissong,) be independent.
Then

X1+ X5 OPoissorfay +ay)

(il) Random sample : Let X [JPoissong) denote the number of
elements in a set, and Y denote the size of a random sample of this set
(each element taken independently with probability p). Then

Y OPoissoripa)

(i) Random sorting : Let Xand Y be as in (ii), and Z=X- Y. Then
Y and Z are independent (given that X is unknown) and

Z [1Poissori(1l- p)a)

36
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Continuous random variables

Definition : Random variable X is continuous if
there is an integrable function fy: [0 — [, such that for all x [ [

Fx () =P{X=<x= [fx(y)dy

The function fy is called the probability density function  (pdf)
— The set S, where fy > 0, is called the value set

Properties:

(i) P{X=x}=0 foralxO

(i) Pla<X<b}=P{asX<b}=[Pf(x) dx

(i) P{XOA} = [,y (x) dx

(iv) P{X OO} = [*fy(xX) dx :js_xfx(x) dx=1

38




Example

A fX(X) A FX(X)

v

>
I I 1 = !

X1 X% X X1 X X3
probability density function (pdf) probability distribution function (PDF)

Sk = (Xq, X3)

39

Expectation and other distribution related parameters

» Definition : The expectation (mean value) of X is defined by
(00]
Ux = E[X]:= Ifx(x)xdx
—00

— Note 1: The expectation exists only if [_,.* f, (X)|x| dx< oo

— Note 2: If [ ,® f (X)X = 0, then we may denote E[X] = oo

— The expectation has the same properties as in the discrete case
(see slide 22)

» The other distribution parameters (variance, covariance,...) are defined
just as in the discrete case

— These parameters have the same properties as in the discrete case
(see slides 23-25)

40
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Uniform distribution

X OU(a,b), a<b

— continuous counterpart of “rolling a die”
Value set: S = (a,b)
Probability density function (pdf):

fy (x):=P{X Odx =b}a, x0(a,b)
Probability distribution function (PDF):
Fy (X):=P{X <x=X2 x[(ab)

(@p
jb)

Mean value: E[X] = [P x/(b - &) dx = (a + b)/2
Second moment: E[X?] = [P x%/(b - a) dx = (a® + ab + b?)/3
Variance: DYX] = E[X?] - E[X]? = (b - a)%/12

42




Exponential distribution

X OExp(A), A>0

— continuous counterpart of geometric distribution (“failure” prob. = Adf)
« Value set: S = (0,0)
* Probability density function (pdf):

fy (x):=P{X Odx = 1™, x>0
* Probability distribution function (PDF):
Fy (X):=P{X <X} =1-e™ x>0

« Mean value: E[X] = [ AX exp(AX) dx= 1/
- Second moment: E[X?] = I A2 expEAx) dx = 2/\2

. Variance: DX] = E[X?] - E[X]2 = 1/A2 43

Memoryless property

» Exponential distribution has so called memoryless property
for all x,y U (0,0)

P{(X>x+y|X>x =P{X >y}

— Prove! (Tip: P{X>x} = ™)
» Application:
— Assume that the call holding time is exponentially distributed with mean h.

— Consider a call that has already lasted for X minutes.
Due to memoryless property,
this gives no information about the length of the remaining holding time:
it is distributed as the original holding time!

— The expectation for the remaining holding time is always h.

44




Minimum of exponential random variables

« Let X; HEXp(A,) and X, DEXp(A,) be independent . Then
X ™M= min{ Xy, X5} DEXp(A, + )
and

A

min _ —
PUX™ = Xi} =

10{12}

« Prove! (Tip: See slide 16)
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Normalized normal (Gaussian) distribution

X ON(0.)

— limit of the “normalized” sum of 11D r.v.s with mean O and variance 1
Value set: Sy = (-00,0)
Probability density function (pdf):

1,2

fy (X):=P{X OdX =¢(x) :zéfne 2
Probability distribution function (PDF):

Fx ()= P{X <3} =®(x):=["_4(y)dy

Mean value: E[X] =0 (symmetric pdf)
Variance: D{X] = 1

46




Normal (Gaussian) distribution

X ON(u,0?), w00, 0>0
— if (X- /o ON(0,1)

Value set: Sy = (-00,0)
Probability density function (pdf):

fy (X):=P{X Od% = Fy'(x) = ;¢(";"]
Probability distribution function (PD{F):
B
Fx () =P{X<x =P} . =& P
Mean value: E[X] = p + oE[(X - p)/0] = 4 (symmetric pdf around L)
Variance: DYX] = 02D?[(X - w)/o] = o2

47

Properties

(i) Linear transformation : Let X ON(x,0%) and a,3 0 0. Then
Y:=aX + [ ON(au + ,B,azaz)

(i) Sum: Let X; O N(/Jl,alz) and X, [ N(,L12,022) be independent .
Then

X1+ Xo ON(t4 + o, 0F +0%)

(iii) Sample mean : Let X, ON(u,02), i = 1,...n, be independent and
identically distributed (11D). Then

n
Y — 2
Xn:=13 X ON(u, to?)
=1

48




Central limit theorem (CLT)

Let Xy,..., X,, be independent and identically distributed (IID)
with mean M and variance 02 (and the third moment)
Central limit theorem

l.d.

= (Xn=p) - N(OY)

It follows that

Xp = N(,u,ﬁaz)
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Other random variables

¢ |n addition to discrete and continuous random variables,
there are so called mixed random variables
— containing some discrete as well as continuous portions

— It can be shown that any PDF may be decomposed into a sum of three
parts, namely, a pure jump function, a purely continuous portion and a
singular portion (which rarely occurs in distribution functions of interest)

* Example:

— Waiting time W in an M/M/1 queue has an atom at zero
(P{W=0} =1 - p > 0) but otherwise the distribution is continuous

Fu(X)
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THE END

-
K
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