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7. Loss systems

Simple teletraffic model

• Customers arrive at rate λ (customers per time unit)

– 1/λ = average inter-arrival time

• Customers are served by n parallel servers

• When busy, a server serves at rate µ (customers per time unit)

– 1/µ = average service time of a customer

• There are m waiting places

• It is assumed that blocked customers (arriving in a full system) are lost
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7. Loss systems

Pure loss system

• No waiting places (m = 0)

– If the system is full (with all n servers occupied) when a customer arrives,
she is not served at all but lost

– Some customers are lost

• From the customer’s point of view,
– it is interesting to know e.g. the blocking probability

• Note: In addition to the case where the arrival rate λ is constant, we will
consider the case where it depends on the state of the system: λ(x)
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7. Loss systems

Infinite system

• Infinite number of servers (n = ∞)
– No customers are lost or even have to wait before getting served

• Note: Also here, in addition to the case where the arrival rate λ is
constant, we will consider the case where it depends on the state of the
system: λ(x)
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7. Loss systems

Blocking

• In a loss system some calls are lost
– a call is lost if all n channels are occupied when the call arrives

– the term blocking refers to this event

• There are (at least) two different types of blocking quantities:
– Call blocking Bc = probability that an arriving call finds all n channels

occupied = the fraction of calls that are lost

– Time blocking Bt = probability that all n channels are occupied at an
arbitrary time = the fraction of time that all n channels are occupied

• The two blocking quantities are not necessarily equal
– If calls arrive according to a Poisson process, then Bc = Bt

• Call blocking is a better measure for the quality of service experienced
by the subscribers but, typically, time blocking is easier to calculate
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7. Loss systems

Poisson model (M/M/ ∞∞∞∞)

• Definition : Poisson model is the following simple teletraffic model:

– Infinite number of independent customers (k = ∞∞∞∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ > 0
• so, customers arrive according to a Poisson process with intensity λ

– Infinite number of servers (n = ∞∞∞∞)

– Service times are IID and exponentially distributed with mean 1/µ > 0
– No waiting places (m = 0)

• Poisson model:

– Using Kendall’s notation, this is an M/M/∞ queue

– Infinite system, and, thus, lossless

• Notation:

– a = λ/µ = traffic intensity
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7. Loss systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t
– Assume that X(t) = i at some time t, and

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h),
a new customer arrives (state transition i → i+ 1)

• if i > 0, then, with prob. iµh + o(h),
a customer leaves the system (state transition i → i-1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process
with an infinite state space S= {0,1,2,...}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a Poisson distribution :

• Remark (insensitivity):
– The result is insensitive to the service time distribution, that is:

it is valid for any service time distribution with mean 1/µ
– So, instead of the M/M/ ∞∞∞∞ model,

we can consider, as well, the more general M/G/∞∞∞∞ model
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7. Loss systems

Erlang model (M/M/ n/n)

• Definition : Erlang model is the following simple teletraffic model:

– Infinite number of independent customers (k = ∞∞∞∞)

– Interarrival times are IID and exponentially distributed with mean 1/λ > 0
• so, customers arrive according to a Poisson process with intensity λ

– Finite number of servers (n < ∞∞∞∞)

– Service times are IID and exponentially distributed with mean 1/µ > 0
– No waiting places (m = 0)

• Erlang model:
– Using Kendall’s notation, this is an M/M/n/n queue

– Pure loss system, and, thus, lossy

• Notation:

– a = λ/µ = traffic intensity
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7. Loss systems

State transition diagram

• Let X(t) denote the number of customers in the system at time t
– Assume that X(t) = i at some time t, and

consider what happens during a short time interval (t, t+h]:

• with prob. λh + o(h),
a new customer arrives (state transition i → i+ 1)

• with prob. iµh + o(h),
a customer leaves the system (state transition i → i-1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process
with a finite state space S= {0,1,2,…,n}

1 n-1
λ

2µ
0

λ

µ

λ

(n-1)µ
n

λ

nµ



15

7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a truncated Poisson distribution :

• Remark (insensitivity):
– The result is insensitive to the service time distribution, that is:

it is valid for any service time distribution with mean 1/µ
– So, instead of the M/M/n/n model,

we can consider, as well, the more general M/G/n/n model
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7. Loss systems

Time blocking

• Time blocking Bt = probability that all n channels are occupied at an
arbitrary time = the fraction of time that all n channels are occupied

• For a stationary Markov process, this equals the probability πn of the
equilibrium distribution π. Thus,
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7. Loss systems

Call blocking

• Call blocking Bc = probability that an arriving call finds all n channels
occupied = the fraction of calls that are lost

• However, due to Poisson arrivals and PASTA property,
the probability that an arriving call finds all n channels occupied equals
the probability that all n channels are occupied at an arbitrary time,

• In other words, call blocking Bc equals time blocking Bt:

• This is Erlang’s blocking formula
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7. Loss systems

Binomial model (M/M/ k/k/k)

• Definition : Binomial model is the following (simple) teletraffic model:

– Finite number of independent customers (k < ∞∞∞∞)

• on-off type customers (alternating between idleness and activity)

– Idle times are IID and exponentially distributed with mean 1/ν > 0
– As many servers as customers (n = k)

– Service times are IID and exponentially distributed with mean 1/µ > 0
– No waiting places (m = 0)

• Binomial model:
– Using Kendall’s notation, this is an M/M/k/k/k queue

– Although a finite system, this is clearly lossless

• On-off type customer (note: when active, a customer is in service):

0
1

idleness

service



21

7. Loss systems

On-off type customer (1)

• Let Xj(t) denote the state of customer j ( j = 1,2,…,k ) at time t
– State 0 = idle, state 1 = active = in service

– Consider what happens during a short time interval (t, t+h]:

• if Xj(t) = 0, then, with prob. νh + o(h),
the customer becomes active (state transition 0 → 1)

• if Xj(t) = 1, then, with prob. µh + o(h),
the customer becomes idle (state transition 1 → 0)

• Process Xj(t) is clearly a Markov process with state transition diagram

• Note that process Xj(t) is an irreducible birth-death process
with a finite state space S= {0,1}
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7. Loss systems

On-off type customer (2)

• Local balance equations (LBE):

• Normalizing condition (N):

• So, the equilibrium distribution of a single customer is the Bernoulli
distribution with success probability ν/(ν+µ)

• From this, we could deduce that
the equilibrium distribution of the state of the whole system (that is: the
number of active customers) is the binomial distribution Bin(k, ν/(ν+µ))
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7. Loss systems

State transition diagram

• Let X(t) denote the number of active customers

– Assume that X(t) = i at some time t, and
consider what happens during a short time interval (t, t+h]:

• if i < k, then, with prob. (k-i)νh + o(h),
an idle customer becomes active (state transition i → i+ 1)

• if i > 0, then, with prob. iµh + o(h),
an active customer becomes idle (state transition i → i-1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process
with a finite state space S= {0,1,…,k}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a binomial distribution :

• Remark (insensitivity):
– The result is insensitive both to the service and the idle time distribution,

that is: it is valid for any service time distribution with mean 1/µ and any idle
time distribution with mean 1/ν

– So, instead of the M/M/k/k/k model,
we can consider, as well, the more general G/G/k/k/k model
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7. Loss systems

Engset model (M/M/ n/n/k)

• Definition : Engset model is the following (simple) teletraffic model:

– Finite number of independent customers (k < ∞∞∞∞)

• on-off type customers (alternating between idleness and activity)

– Idle times are IID and exponentially distributed with mean 1/ν > 0
– Less servers than customers (n < k)

– Service times are IID and exponentially distributed with mean 1/µ > 0
– No waiting places (m = 0)

• Engset model:
– Using Kendall’s notation, this is an M/M/n/n/k queue

– This is a pure loss system, and, thus, lossy

• On-off type customer (note: when active, a customer is in service):
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Note: If the system is
full when an idle cust.
tries to become an
active cust., a new idle
period starts.
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7. Loss systems

State transition diagram

• Let X(t) denote the number of active customers

– Assume that X(t) = i at some time t, and
consider what happens during a short time interval (t, t+h]:

• if i < n, then, with prob. (k-i)νh + o(h),
an idle customer becomes active (state transition i → i+ 1)

• if i > 0, then, with prob. iµh + o(h),
an active customer becomes idle (state transition i → i-1)

• Process X(t) is clearly a Markov process with state transition diagram

• Note that process X(t) is an irreducible birth-death process
with a finite state space S= {0,1,…,n}
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7. Loss systems

Equilibrium distribution (1)

• Local balance equations (LBE):

• Normalizing condition (N):
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7. Loss systems

Equilibrium distribution (2)

• Thus, the equilibrium distribution is a truncated binomial distribution :

• Remark (insensitivity):
– The result is insensitive both to the service and the idle time distribution,

that is: it is valid for any service time distribution with mean 1/µ and any
idlee time distribution with mean 1/µ

– So, instead of the M/M/n/n/k model,
we can consider, as well, the more general G/G/n/n/k model
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7. Loss systems

Time blocking

• Time blocking Bt = probability that all n channels are occupied at an
arbitrary time = the fraction of time that all n channels are occupied

• For a stationary Markov process, this equals the probability πn of the
equilibrium distribution π. Thus,
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7. Loss systems

Call blocking (1)

• Call blocking Bc = probability that an arriving call finds all n channels
occupied = the fraction of calls that are lost

• In the Engset model, however, the “arrivals” do not follow a Poisson
process. Thus, we cannot utilize the PASTA property any more.

• In fact, the distribution of the state that an “arriving” customer sees
differs from the equilibrium distribution. Thus, call blocking Bc does not
equal time blocking Bt in the Engset model.
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7. Loss systems

Call blocking (2)

• Let πi* denote the probability that there are i active customers when an
idle customer becomes active (which is called an “arrival”)

• Consider a long time interval (0,T):
– During this interval, the average time spent in state i is πiT
– During this time, the average number of “arriving” customers (who all see

the system to be in state i) is (k-i)ν⋅πiT
– During the whole interval, the average number of “arriving” customers is

Σj (k-j)ν⋅πjT

• Thus,
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7. Loss systems

Call blocking (3)

• It can be shown (exercise!) that

• If we write explicitly the dependence of these probabilities on the total
number of customers, we get the following result:

• In other words, an “arriving” customer sees such a system where there
is one customer less (she herself!) in equilibrium
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7. Loss systems

Call blocking (4)

• By choosing i = n, we get the following formula for the call blocking
probability:

• Thus, for the Engset model, the call blocking in a system with k
customers equals the time blocking in a system with k-1 customers:

• This is Engset’s blocking formula
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7. Loss systems

THE END


