

Problems

- 1. ShuffleNet of fig. 3.33(a):
 - a) Prove that with fixed maximal hop H the ShuffleNet can consist of max. $N=2^H$ nodes.
 - b) Assuming uniform traffic, what is the average hop count? $(N = 2^H)$
- 2. Connections $A \to A^*$ and $B \to B^*$ use the shortest path routing and both are using wavelength λ_1 . The nodes of the network are waveband-selective LDCs. Configure an arriving connection $X \to X^*$ into the network. Would you configure the connection same way if the nodes were WSXC?
- 3. When logical topology of Shufflenet (fig. 3.33(a) is realized in a folded bus (fig. 3.33(c)^a) and a bidirectional ring (fig. 3.34) networks 16 and 2 wavelengths were required. How many wavelengths is required to realize the same logical topology in case of one directional ring?

^aError: 3.34(c) in slides but should be 3.33(c) (book)