Homework

- 1. In the example of Section 5.4.1.3, approximate π by 22/7 and determine the minimum frame length L_{min} . How much capacity is wasted in this case?
- 2. In the queueing delay example of Figure 5.27, let all parameters be the same except the propagation delay. Take the speed of light in the fiber to be $2 \cdot 10^8$ m/s. Determine the fiber distance at which the propagation delay in the fiber equals the average system delay \overline{D} when $\rho = 0.5$. (\overline{D} includes all delays except propagation delay.)
- 3. In the tell-and-go example of Figure 5.38, assume that all packets in transmitting station 4 are destined for receiveing station 3.
 - (a) Show how Figure 5.38(b) would look in this case, indicating conflicts and lost packets.
 - (b) Show how the lossless schedule of Figure 5.43 would look in this case.
 - (c) Show a perfect schedule for this case.