S-38.149 Home exercises of lecture 1

Riikka Susitaival

- Exercise 1 (Ex. 6.1 from the book)

Consider a steady state open network with three exponential nodes (with parameter $\mu_{1}, \mu_{2}, \mu_{3}$) and Poisson arrivals (with rate γ) to node number 1. Customers follow one of two routes through the network: node 1 to node 2 (with probability p) an node 1 to node 3 (with probability $q=1-p$). Write down the arrival rates λ_{i} at node $i(i=1,2,3)$. Use Little's result and Jackson's theorem to obtain the mean waiting time spent by a customer in the network and show that if $\mu_{2}=\mu_{3}$, this is least when $p=q=\frac{1}{2}$.

- Exercise 2

Consider a Jackson network presented in the figure below. Each server is a M/M/1-system with service rate $\mu=30$ customer/second. External arrival rate to station 1 is $\gamma=10$ customer/second. The routing probabilities are show in the figure. Find out the probability that there is at most one customer in the system.

- Exercise 3 (Ex. 6.3 from the book)

Let $G(K)$ be the normalizing constant for a Gordon-Newell network of M servers with constant service rates μ_{1}, \ldots, μ_{M}, visition rates e_{1}, \ldots, e_{M} and population K. Prove that in the steady state:

$$
\begin{aligned}
& \text { (a) } P\left(N_{i}=k \mid N_{j} \geq h\right)=\left(\frac{e_{i}}{\mu_{i}}\right)^{k} \frac{G_{i}(K-k-h)}{G(K-h)} \\
& \text { (b) } P\left(N_{i}=k \mid N_{j}=h\right)=\left(\frac{e_{i}}{\mu_{i}}\right)^{k} \frac{G_{i j}(K-k-h)}{G_{j}(K-h)}
\end{aligned}
$$

where $(1 \leq i \neq j \leq M), N_{i}$ is the random variable for the queue size at server i and $G_{i}, G_{i j}$ are the normalizing constants for the network with servers i, i and j respectively removed.

