S-38.149 Exercises for 26.10.1998 Antti Kuurne

- 1. In figure relating to exercise is a subnetwork, where all μ 's are equal. We try to find throughput $u(n)$ (you can think throughput means same as service rate) of Norton equivalent queue. One way to do this is to use combinatorics.
a) Show that total number of ways n identical packets (balls, if you wish) can be distributed randomly among M queues (boxes) is given by

$$
(\mathrm{n}+\mathrm{M}-1)!/[\mathrm{n}!(\mathrm{M}-1)!]=: \mathrm{C}(\mathrm{M})
$$

b) Show that $C(M-1):=(n+M-2)!/[n!(M-2)!]$ represents the number of combinations that result in zero packets (balls) in any, say first, queue (box). Hence show that the probability that a queue is empty is given by $\mathrm{C}(\mathrm{M}-1)$ / $\mathrm{C}(\mathrm{M})$. Use this to calculate the Norton equivalent throughput from equation $\mathrm{u}(\mathrm{n})=\mathrm{n} \mu /(\mathrm{n}+\mathrm{M}-1)$.

S-38.149 Exercises for 26.10.1998 Antti Kuurne

- 2. Fill in to the lower part of exercise one's figure an artificial queue with service rate to make it a complete virtual circuit model. Assume $\lambda=\mu_{i}=\mu$ Show that under sliding window control, the throughput of the virtual circuit and the time delay across it (from S to D) are given by $\gamma=N \mu /(N+M)$ and $E(T)=[M /(M+1)](M+N) / \mu$.
Show also that the window size N that maximizes $\gamma / E(T)$ is given by $N=M$.

