
COST 257 MID-TERM SEMINAR

INTERIM REPORT ON

SOURCE CHARACTERIZATION

Source Characterization in Broadband Networks

Edited by

Sándor Molnár, István Maricza

High Speed Networks Laboratory
Dept. of Telecommunications and Telematics

Technical University of Budapest
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Preface

This interim report provides an overview of results on source characterization obtained in
the COST 257 Action on ”Impacts of New Services on the Architecture and Performance
of Broadband Networks”.

First, the results related to fractal traffic characterization is presented. Multifractal
analysis, the issue of non-stationarity and long-range dependent (LRD) traffic models are
discussed. Three models have been investigated which can exhibit LRD features: quasi-
Markovian models, superposed heavy-tailed on/off models and shifting level models.
Finally, the impact of LRD on queueing performance is discussed in this section.

Second, the issue of spatial traffic characterization is addressed and the estimation
and characterization of expected teletraffic demand is investigated.

Next, studies on the second order traffic descriptors to characterize MAPs and in-
vestigations on the application of generalized peakedness are outlined.

Finally, research results concerning Internet traffic characterization are presented.

The report is based on the COST 257 technical documents. The editors are thankful
to P. Mannersalo for his contribution to the report. Contributors of the following authors
have been used: A. T. Andersen, J. Arnold, C. Blondia, S. Bodamer, J. Charzinski, I.
Cselényi, T. Daniels, J. Färber, M. Frater, M. Grasse, A. Koski, K. Laevens, T. Leskien,
R. Macfadyen, P. Mannersalo, Gy. Miklós, S. Molnár, B. F. Nielsen, I. Norros, P.
Tran-Gia, K. Tutschku, A. Vidács, J. Virtamo.
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1 Introduction

Broadband networks are expected to support various applications. These applications
(ranging from the traditional telephony to the multimedia services) can generate a het-
erogeneous mixture of traffic to the network. The nature of traffic can be very differ-
ent considering the timeliness requirements of user applications (interactive or retrieval
services) and the traffic profile at different time scales from macro levels (e.g. calls)
to microscopic levels (e.g. cells or packets). Understanding the nature of this traffic,
identifying its characteristics and developing appropriate traffic models are of crucial im-
portance to the teletraffic engineering and the performance evaluation of our broadband
networks being or to be developed.

One of the most important lessons learned from traffic measurements studies during
the last two decades is that data traffic is highly variable and very bursty over many
time scales [120]. Finding a good teletraffic framework dealing with this bursty data
traffic led researchers to investigate fractal models [121]. Fractal traffic characterization
is an important research topic of the COST 257 Action and activities on this field are
summarized in Section 2 of this report.

Developments in the mobile world and especially the design of the third generation
mobile communication networks resulted in a number of challenges in traffic modeling
besides many other fields. The analysis of the distribution of the expected teletraffic
demand in the complete service area is one of the important topics. The estimation
and characterization of this traffic based on a geographical traffic model is discussed in
Section 3 of the report.

What statistical descriptors of the arrival process can give an accurate prediction of
the queueing behaviour? This important question is addressed in Section 4. It is well
documented in the literature that in general queueing behaviour cannot be accurately
predicted on the basis of first and second order properties of the counts of the arrival
process. The topic is investigated in the framework of Markovian Arrival Processes
(MAP) and results illustrated with simple examples. A study on the general framework
of peakedness for traffic engineering is also presented in this section. We provide the
computation of peakedness for a number of important discrete time models including the
Markov modulated batch Bernoulli process and the batch renewal process. The analysis
of generalized peakedness for measured data including MPEG video, ATM and Ethernet
traffic is given.

Internet becomes more and more popular and there are many unsolved issues in the
field of Internet traffic characterization. For example, we can observe that more and
more users access Internet from their homes via public switched telephone network. To
efficiently develop our telephone networks to this growing demand a good understanding
of traffic characteristics is needed. This topic is addressed in Section 5.
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2 Fractal traffic characterization

Recent traffic analysis studies based on measuraments taken from different LAN and
WAN reported high variability and burstiness of network traffic over a wide range of
time scales [120]. Statistically, this high traffic variability can be well captured by
long range dependence (LRD), i.e. autocorrelations that exhibit a power-law decay.
More precisely, a covariance-stationarity process X = (Xk : k ≥ 0) with autocorrelation
function r(k), k ≥ 0 is said to exhibit LRD if r(k) ∼ k2H−2L(k) as k → ∞, 1/2 < H < 1,

where L is slowly varying at infinity, i.e. limk→∞
L(tk)
L(k)

= 1, t > 0 and a(x) ∼ b(x)

means a(x)/b(x) → 1 as x → ∞. The parameter H is called the Hurst parameter and
used as a measure of the degree of LRD. The LRD is also refered as Joseph effect or
persistence phenomenon.

This hyperbolically decaying autocorrelation is an important property of self-similar
processes. Self-similarity is a mathematical concept which is related to fractals and offer
a promising framework of modeling highly bursty network traffic that exhibit LRD. For-

mally, a process X is exactly self-similar if Xk
d
= X

(m)
k , where X

(m)
k = 1

mH

∑km
i=(k−1)m+1Xi

and the equality is in the sense of finite-dimensional distributions. We can also define
second-order self-similarity, i.e. r(m)(k) = r(k), and asymptotically second-order self-
similarity, i.e. limm→∞ r(m)(k) = r(k) where r(m)(k) denotes the autocorrelation of

process X
(m)
k .

Models based on the concept of self-similarity have been developed and applied in
several research studies [120]. The Fractional Brownian Motion which can be found
the limit traffic in many traffic aggregation is investigated in [105] and related results
obtained in the COST 257 activity is found partly in this report, and partly in the interim
report on ”Queueing Systems”. Other models, like the fractional ARIMA processes are
also under investigations [105].

Several studies have been carried out to investigate the physical explanations of the
observed fractal properties in network traffic. For example, it was shown by Willinger
et al. that the self-similarity properties found in Ethernet LAN can be well explained
by a structural model where each source is modeled by an ON/OFF model having
heavy-tailed distributions with infinite variance of the ON and/or OFF periods. The
aggregation of traffic generated by these sources produce self-similar traffic [119]. Other
limit results for aggregated WAN traffic based on the M/G/∞ queueing model due to
Cox [18] and a more refined model due to Kurtz [59] can also provide models to explain
self-similar traffic dynamics. An important finding of these models is that heavy-tailed
distributions play an important rule in the appeared fractal properties [119].

An important generalization of self-similar processes is multifractal processes. Mul-
tifractals provide more flexible scaling properties which seem to be needed to capture
local irregularities of some types of network traffic. In this section the COST 257 results
related to multifractal analysis is presented.

Non-stationarity of network traffic can also produce properties detected by many
statistical methods which are similar to fractal properties. Moreover, in some cases non-
stationarity models can offer an alternative approach to capture these properties. This
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section performs the analysis of non-stationarity and introduces a video model based on
a level shifting process. We also address the impact of LRD on queueing. Investigations
based on both measured and synthetic LRD traffic are discussed.

2.1 Multifractal analysis

In this section, we consider quite a new approach in telecommunication engineering —
multifractal analysis. Multifractals themselves are a relatively old topic first introduced
by Mandelbrot in the context of turbulence [75, 76] in early 70’s. In telecommunications,
multifractals were introduced only recently: Appleby combined multifractal analysis of
population distributions with network planning [5, 6], Riedi and Lévy-Véhel applied
multifractal analysis to data traces [104], Taqqu, Teverovsky and Willinger considered
whether network traffic is self-similar or multifractal [112], Feldmann, Gilbert and Will-
inger motivated the multifractal nature of data traffic using a cascade based construction
[32], and Riedi et al. developed a multiscale modeling framework suitable for network
traffic characterization [103].

Also in COST257 project, some work related to multifractal analysis has been done.
Inspired by Riedi and Levy-Vehel’s work we have considered multifractal traffic charac-
terization with real ATM trace and multifractal spectra of some standard source models
[79, 78], and on the other hand, following the Appleby’s ideas, we have studied effects
of the multifractal nature of a population distribution on network planning [77].

In this report, we present some aspect of multifractal analysis related to data traces.

2.1.1 Some basics of multifractal analysis

Multifractal analysis has clearly an advantage compared with standard statistical ap-
proaches because it gives information about both local and global properties of the
observed data. The local, possibly singular, behavior is measured by the Hölder expo-
nent at a point, and the global behavior is characterized by the statistical distribution of
the occurring Hölder exponents. More strictly speaking, multifractal analysis provides
an approach for characterizing a singular measure according to the distribution of the
asymptotics of its local finite densities.

The reference [104] includes a nice introduction to the basic ideas of multifractal
analysis and an extensive bibliography. Here we present only what is necessary for
understanding the rest of this section.

Let us first consider the abstract setup in a simplified form. Let µ be a probability
measure on [0, 1], and denote the Lebesgue measure by λ. Let In denote the partition
into 2n equal subintervals

In = {[(k − 1)2−n, k2−n), k = 1, . . . , 2n}
and let

Cn(x) = the element of In containing x.

We are interested in the distribution of the random variables µ(Cn(x)) with respect to λ
(in our application: the distribution in time of “cell arrival rates” defined at resolution
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2−n). Now, the theory of large deviations enters the game. For each n, define the “free
energy function”

cn(q) = logEλ exp(q log µ(Cn(x))).

The Gärtner-Ellis theorem states that if the limit function

c(q) = lim
n→∞

cn(q)

n

exists and is differentiable in its domain, assumed to contain 0 as an interior point, and
if |c′(q)| → ∞ as q approaches the boundary of {c <∞}, then we have for every α

lim
ε↓0

lim
n→∞

1

n
logPλ(| 1

n
logµ(Cn(x)) − α| < ε) = −c∗(α),

where the entropy function c∗ is defined as the convex conjugate

c∗(α) = sup
q

(qα− c(q)).

Note that 1
n

log µ(Cn(x)) = α means

µ(Cn(x)) = λ(Cn(x))−α/ log 2.

We then call h = −α/ log 2 the coarse Hölder exponent of the set Cn(x). If the assump-
tions of the Gärtner-Ellis theorem hold, the distribution of coarse Hölder exponents is
approximately given by the concave function −c∗(−α/ log 2).

Quite often in multifractal analysis, slightly different functions are used. Instead of
the free energy function we use the partition function

τ(q) = lim
δ→0

logSδ(q)

log δ
,

where the partition sum Sδ is defined by

Sδ(q) =
∑
C∈Ĩδ

µ(C)q,

and the summation is done over the set Ĩδ = {[kδ, (k + 1)δ) | k ∈ N, µ([kδ, (k + 1)δ)) 6=
0}. Correspondingly, instead of the entropy function, we have the Legendre spectrum

fL(h) = inf
q

(hq − τ(q)) . (1)

These functions are equal to c and c∗ up to trivial transformations. Note that we write
Ĩδ = Ĩn if δ = δn, and in this report, we consider only the case δn = 2−n.

However, the limit function c(q), and thus τ(q), does not necessarily exist, and even
if it exists, it need not be differentiable. In the latter case, c∗ (and fL) can be defined
but it does not give the right information. In this case another, more sensitive notion of
multifractal spectrum, the coarse grained spectrum, becomes important.
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Using the coarse Hölder exponent, at the level of sampling δn = 2−n,

h(Cn) =
log µ(Cn)

log δn

one can calculate the coarse grained spectrum

fG(h) = lim
ε↓0

lim
n→∞

sup
logNδn(h, ε)

− log δn
, (2)

where Nδn(h, ε) = #
{
Cn ∈ Ĩn : h(Cn) ∈ (h− ε, h+ ε]

}
(the number of intervals Cn of

size δn with coarse Hölder exponent near h).
The coarse grained spectrum measures the exponential speed that the probability of

observing a coarse Hölder exponent different from the expected value approaches zero
as the resolution tends to infinity. If the conditions for the large deviation principle
are satisfied then fG can be calculated as the Legendre transformation of the partition
function τ , i.e., fG = fL. Unfortunately, those conditions are rarely satisfied in traffic
analysis. However,

τ(q) = inf
α∈R

(αq − fG(α))

holds in every case. This means that fL is the concave hull of fG. In spite of the fact
that fL does not give us any extra information about spectra, it is worth of computing.
Especially the behavior of the partition sum Sn(q) with different resolutions includes
essential information about multifractal scaling.

2.1.2 Multifractal analysis of data

Suppose that we have a sampling of a measure µ at the resolution N . In order to check
whether there exist multifractal scaling we calculate the partition sum with several values
of q and over several resolutions:

Sm(q) =
∑

C∈Ĩlog N/m

µ (C)q ,

where Ĩl = {[k2−l, (k + 1)2−l
)

: k ∈ N, µ(
[
k2−l, (k + 1)2−l

)
) 6= 0}, and for example,

N = 2n and m = 1, 2, 22, . . . , 2n. If Sm(q) is a linear function of m in some region in
the log–log scale we say that the region in question is the scaling region and the mea-
sure exhibits multifractal scaling there. Furthermore, we can approximate the partition
function τ(q) by solving the equation

logSm(q) ≈ τ(q) logm+ const.

for τ(q) in the least square sense in the scaling region. After finding τ , an approximation
for the Legendre spectrum is found numerically by applying (1) at the calculated values
of q.
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Approximating the coarse grained spectrum fG is a more complicated task. In (2)
we must take limits over two variables, namely, ε and n. In practice, given a sampling
at the resolution 2n one must determine a suitable value for ε, i.e., ε as a function of n,
such that the corresponding approximation is near the right one. This can be done by
some density estimation method, for example, by using the double kernel method [24].

2.1.3 Multifractal analysis of recorded ATM traffic

Let us apply multifractal approach into the analysis of real ATM traffic. Twenty traces
of daytime ATM traffic were recorded at Tampere University of Technology. These
recordings consist of arrival times of cells into a ATM link during the observation interval,
each recording lasting about two seconds. The traffic is the output of a router with
an ATM interface, transmitting Internet packets from TUT to the Finnish University
Network. Four such traces are shown in Figure 1.
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Figure 1: Four traces of ATM traffic observed at Tampere University of Technology.
The number of cells per millisecond are plotted.

We consider the atomic measure counting arrivals. The corresponding measure is
extremely well scalable confirming that calculating multifractal spectra is reasonable
(see Figure 2). The Legendre spectra shows that there is a quite wide range of different
intensities in the observed traffic, and that it is a bit more probable that traffic is light
(because of the slight non–symmetry of the spectrum).
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Figure 2: Multifractal analysis of the atomic measure of the arrival times originated
form the recorded ATM traffic at TUT. The log–log plot of the partition
sum is shown on the left (q = −3.5,−3.0, . . . , 3.0, 3.5), the evolution of the
approximation of the coarse grained spectra over resolutions 217, 216 is on the
left and 215, and the Legendre spectrum and the “best” approximate coarse
grained spectrum are plotted below.
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The really noteworthy result is seen in the coarse grained spectra. The two peaks
seen suggests that the recorded traffic might include two different phases. In a matter
of fact, the ATM traffic concerned includes two possible speeds that cells can be sent.
It is quite probable that the peaks correspond to them.

2.1.4 Multifractal models

The standard source models, e.g., Poisson processes or heavy tailed renewal processes,
do not have true multifractal nature and their scaling region is not wide enough (see
[78]). Unfortunately, nor the multifractal properties of fractional Brownian motion are
consistent with those of measured traffic traces (see [65]).

Binomial measures and their randomized versions are often introduced as the very
first multifractal models, (see e.g., [104, 32]). Even these simplest models can reproduce
some interesting statistical properties observed in real traffic. Here we consider a single
example. Let the sequence of partitions In be defined as in section 2.1.1, and define the
measure µ by the following randomized procedure. Let

Mnk, n = 1, 2, . . . , k = 0, . . . , 2n−1 − 1,

be i.i.d. random variables with values in (0, 1) such that the distribution of M = Mnk is
symmetric around 1/2, i.e., M and 1 −M have the same distribution.

The measure of the dyadic intervals is defined recursively by

µ([2k2−n, (2k + 1)2−n)) = Mnkµ([(k2−n+1, (k + 1)2−n+1))

µ([(2k + 1)2−n, (2k + 2)2−n)) = (1 −Mnk)µ([k2−n+1, (k + 1)2−n+1)).

The measure of a small dyadic interval [k2−n, (k + 1)2−n) has approximately the distri-
bution Lognormal(nm, nσ2), where

m = E logM, σ2 = Var(logM).

Lognormal marginal distributions have often been observed in real traffic (see, e.g.,
[105] p. 364). Here they arise as a consequence of a multiplicative structure of the
measure. Such a structure can be thought of as arising from the hierarchical (multilayer)
nature of telecommunication: the often sited ”burstiness at several time scales”. Of
course, the distribution of Mnk would be in a more accurate model depend on n, but
for qualitative understanding we can study the simplified scheme in a similar way as
self-similar processes have be used in traffic modeling.

Let us consider the variance of the measure of a dyadic interval. Then we have

v(2−n)
.
= Var(µ([k2−n, (k + 1)2−n))) = (EM2)n − 2−2n.

Substituting t = 2−n, this reads

v(t) = t− log2 EM2 − t2.
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The second term is similar to the error term in a sample variance (cf. [105] (13.6.1)). In
any case, the first term dominates for small t. Thus the variance growth for small t is
approximately of the self-similar form v(t) = t2H with

H = −1

2
log2 EM2.

Note that EM2 lies in the interval (1
4
, 1

2
) which allows for H all values in (1

2
, 1).
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Figure 3: Binomial random measures at resolution 2−10. M = p + (1 − 2p)U , U is
Uniform(0,1) and p = 0.4 (left) and p = 0.3 (right).

Let us have a look at some simulated realizations where M = p + (1 − 2p)U , U
is Uniform(0,1) and p ∈ (0, 1

2
) is a parameter. Figure 3 shows the cases p = 0.4 and

p = 0.3. Both resemble visually real traffic traces with long range dependence. The
first one could be sold to a non-statistician as fractional Brownian motion, whereas the
second looks very different having strongly non-Gaussian character.

In Figure 4, scaling of the partition sums and the Legendre spectra are shown. It is
quite evident that even with this very simple model by choosing properly the parameter
p and the distribution of U , we could get traces whose multifractal properties resembles
those of real traffic. For a more complicated models see, e.g., [103, 32].
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Figure 4: Multifractal scaling and Legendre spectra of binomial random measures. M =
p+ (1 − 2p)U , U is Uniform(0,1) and p = 0.4 (left) and p = 0.3 (right)
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2.2 The problem of non-stationarity

This section addresses the issue of stationarity which is an important assumption of a
number of traffic models. This issue becomes more important in the context of fractal
models which tempts researchers to use this assumption on a global time-scale.

The analysis of testing for self-similarity and the estimation of the Hurst parameter
are not easy in practice. The problem is that we are of course always dealing with finite
data sets so it is not possible to check whether by definition a traffic trace is self-similar
or not. We are therefore forced to look for different features of self-similarity and long
range dependence in our actual measured traffic. However, the detection of long range
dependence only by identified properties could be misleading. Several non-stationary
processes, e.g. level shifting processes [25] which can be observed in the superposed
effects of different protocol levels [54] (ATM interface card based bursts, IP frames,
window mechanisms, session procedures, etc.) can produce such properties. It means
that if we found the traffic to be Hursty1 it is due to long range dependence or non-
stationarity. Without any proof by rigorous statistical tests of stationarity in many
cases it is only reasonable to discuss about Hursty behaviour over a given time-scale for
a given data set [90, 92].

An analysis based on measured ATM WAN traffic is presented in this section. It is
shown that the presence of non-stationarities can deceive our simple self-similarity tests
and Hurst parameter estimation methods [90, 92]. As an example, based on a formal
statistical test the assumption of weak stationarity of variable bit rate (VBR) video
traffic is questioned [41].

2.2.1 ATM traffic measurements

The measurements were made on the FUNET ATM WAN network. ‘FUNET’ stands
for ‘Finnish University and Research Network’, which provides primarily Internet ser-
vices to its members based on TCP/IP-protocol. All these services are provided by
CSC—Center for Scientific Computing which is a national service center that special-
izes in scientific computing and data communications providing modeling, computing
and information services for universities, research institutes and industry. The FU-
NET long-distance network is built on Telecom Finland’s ATM network. All the Nordic
national networks (FUNET, DENnet, ISnet, SUNET and UNINETT) are connected to
the Nordic Backbone Network (NORDUnet) which has a connection point in Stockholm,
Sweden. NORDUnet has connections to the US backbones, the European backbones and
to networks in Central and Eastern Europe [68].

The measurement was made at the CSC in Espoo, Otaniemi. This location is in
the logical center of the whole network. All the international links start from here,
including the main crosslink to Stockholm. Our measurement equipment was inserted
between the network and the high-capacity ATM switch situated in Espoo (see Figure
5). From that point all the ATM traffic from the FUNET network transported through

1Hursty traffic means that the classical Hurst parameter estimation methods, e.g. R/S tests, estimate
a Hurst parameter which is bigger than 0.5.
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Figure 5: The FUNET measuring configuration.

the switch and the traffic generated at the CSC and transmitted to the rest of the world
could be monitored. The measurements were made by an HP Broadband Series Test
System equipment. During our work only the cell capture capability of the measurement
unit was used: 131 072 ATM cells mapped into a 155 Mbps SONET/SDH signal can be
recorded into the 8MB of capture memory of this equipment. All cells are timestamped
with the calendar time with resolution 0.01 µs.

The aggregated traffic at the most heavily loaded point of the FUNET network was
measured, including Internet traffic, data transfer and supercomputer usage. During
the measurements, two types of data collections were made. In the first scenario the
measured data was the time stamp of the arrival time instant for every single cell on
the link. Because of the upper limit for the number of captured cells each measured
data file contains 131 072 time stamps only, which corresponded to about 3–5 seconds
according to the network load. For the long-term analysis longer measurement periods
were needed, so in the second measurement scenario the recorded data was the number
of cells received in a one second interval. In this case the time interval of the observation
could take several minutes long. A summary of these data sets is given in Table 1. The
files FUNET1, FUNET2 and FUNET3 contain traffic data captured from the incoming
traffic from the whole country to the CSC, and the FUNET4 measurement was made
on the outgoing link. In the case of the last two measurements in Table 1, the registered
data was the number of cells received in every second on the incoming link. The average
traffic load was about 14 Mbps for the first three measurements, and about 8 Mbps in
the case of the FUNET4 data. In the following, we refer to the data above listed as the
‘FUNET measurements’.

As for the first four data sets, the measurement unit was able to register the VPI
and VCI fields from the cell headers, too. Using this extra information we can reveal the
structure of the aggregated traffic stream. Comparing the VPI/VCI fields the aggregated
cell stream can be divided into independent connections. (Note that connection means
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Table 1: Qualitative description of the measured data sets and the values of Hurst-
parameter H calculated from different statistical methods

Filename #packets Time (sec) Ĥidc Ĥvar Ĥrs Ĥper

FUNET1 131,072 3.9 0.7 0.7 0.68 0.68
FUNET2 131,072 5.1 0.67 0.67 0.67 0.73
FUNET3 131,072 4.4 0.66 0.66 0.68 0.68
FUNET4 131,072 6.4 0.72 0.72 0.74 0.78
FUNETSTA.T3 14,807,546 425 0.70 0.70 0.82 0.94
FUNETSTA.T4 43,768,430 1964 0.67 0.67 0.79 0.90
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trace.
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Figure 7: The bandwidths of connec-
tions in the FUNET1 data.

a cell stream with common VPI and VCI fields in the headers. We do not have any
information about the type of traffic carried by these cell streams.) The most important
piece of information for us is the number of connections and their relative cell rate
compared to each other. A detailed analysis was made for the FUNET1 data set. Figure
6 shows the separated cell streams schematically. (Because of the huge number of cells
each hair-cross represents every 50th cell arrival in a connection.) As can be seen from
the figure, during the 4 second measured time period 24 connections were in progress.
The connection with highest rate contains about 30 000 cells which is about 24 percent
of the whole aggregated traffic as well as the first dozen with highest intensity contain
99% of all the cells. Figure 7 shows the pie-chart of bandwidths of connections.

In our investigation the question of stationarity is fundamental. As far as it can be
concluded from Figure 6 without a comprehensive stationary analysis, the cell streams
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are homogeneous enough in time apart from the bursty nature of ATM traffic. There
is no connection turned on or off in the middle of the measurement time and the rates
apart from the burstiness are not changing considerably.

2.2.2 Hurst parameter estimation

Index of Dispersion for Counts is a commonly used measure for capturing the variability
of traffic over different time scales [19]. For a given time interval of length t, the index of
dispersion for counts (IDC) is given by the variance of the number of arrivals At during
the interval of length t divided by the expected value of the same quantity:

IDC(t) = V ar{At}/E{At}. (3)

For a finite data set, the variance of At can be calculated by dividing the whole series
into nonoverlapping blocks of length t and treat them as different instances of At.

Self-similar processes produce a monotonically increasing IDC of the form m−1t2H−1.
Plotting log IDC(t) against log t, this property results in an asymptotic straight line
with slope 2H − 1 [62].

Figure 8(a) depicts the IDC curve corresponding to the trace FUNET1. The sequence
of cell counts in every 100µs interval was analyzed. The IDC curve for the FUNET1
file increases monotonically throughout a time span that covers 3–4 orders of magnitude
and shows an asymptotic slope that is strictly different from the horizontal line and is
estimated to be about 0.4, resulting in an estimate Ĥ of the Hurst-parameter H of 0.7.

The same analysis was made for all the data sets. Table 1 shows the results: the
values of the estimated Hurst-parameter Ĥ . As can be seen from the table, the values
of Ĥ are pretty much the same for all the data sets. It is remarkable that in the case
of the last two data sets the analyzed process was the sequence of cell counts in each
second instead of 100µs as in the case of the first four sets. In spite of the fact that the
time scale was four orders of magnitude higher the Hurst-parameter remained the same.

Variance-time analysis is a method based on the property that a self-similar process
has slowly decaying variances. The so-called variance-time plot is obtained by plotting
log V ar{Xat/a} against log(a) and by fitting a simple least squares line through the
resulting points in the plane, ignoring the small values of a. Values of the estimated
asymptotic slope β̂ between -1 and 0 suggest self-similarity, and the estimate for degree
of self-similarity is given by Ĥ = 1 + β̂/2 [62].

The corresponding plot for the FUNET1 data set can be seen in Figure 8(b). The
estimated values of Ĥ are listed in Table 1. Since the variance-time plots and the IDC
diagrams are closely related statistical methods, the results obtained from this method
are the same as in the previous subsection.

The R/S analysis tries to capture the Hurst parameter based on the rescaled adjusted
range statistics. Given an empirical time series of length N (Xk : k = 1, . . . , N), the
whole series is subdivided into K non-overlapping blocks. Now, we compute the rescaled
adjusted range R(ti, d)/S(ti, d) for a number of values d, where ti = bN/Kc(i − 1) + 1
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Figure 8: Diagnostic plots for FUNET1 data
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are the starting points of the blocks which satisfy (ti − 1) + d ≤ N .

R(ti, d) = max{0,W (ti, 1), . . . ,W (ti, d)} − min{0,W (ti, 1), . . . ,W (ti, d)}, (4)

where

W (ti, k) =

k∑
j=1

Xti+j−1 − k ·
(1

d

d∑
j=1

Xti+j−1

)
, k = 1, . . . , d. (5)

S2(ti, d) denotes the sample variance of Xti , . . . , Xti+d−1. For each value of d one obtains
a number of R/S samples, which decreases from K for larger values of d. One computes
these samples for logarithmically spaced values of d, i.e., dl+1 = m · dl with m > 1,
starting with d0 of about 10. Plotting logR(ti, d)/S(ti, d) vs. log d results in the R/S
plot, also known as pox diagram.

Next, a least squares line is fitted to the points of the R/S plot, where both the R/S
samples of the smallest and largest values of d are omitted. The slope of the regression
line is an estimate for H [105].

Figure 8(c) shows the R/S plot for the FUNET1 data. The analyzed process was
the sequence of cell counts in every 100µs. The estimated value of H for this data set
is 0.68, which is nearly the same as the values calculated by the two previous methods.
The same analysis was made for all the FUNET measurement data sets (see Table 1).

Periodogram-based analysis is used to identify the manifestation of self-similarity by
frequency domain analysis of the measured data. Let I(·) denote the sample periodogram
(i.e., power spectrum as estimated using a Fourier transform) defined by

I(λ) =
1

2πN

∣∣∣∣∣
N∑

j=1

Xje
ijλ

∣∣∣∣∣
2

, λ ∈ [0, π). (6)

The spectral density of self-similar processes obeys a power law near the origin. Thus,
the first idea to determine the Hurst parameter H is simply to plot the periodogram in
a log-log grid, and to compute the slope of a regression line which is fitted to a number
of low frequencies. This should be an estimate of 1− 2H . In most of the cases this will
lead to a wrong estimate of H since the periodogram estimation method is unbiased and
inconsistent. However, this method can reveal the power spectrum near the origin. The
periodogram plot is obtained by plotting log(I(λ)) against log λ.

Figure 8(d) presents the periodogram plot for the FUNET1 data set, where the
analyzed time series was the number of cells in every 1 msec. The slope of the low
frequency part—in the present context, the regression line was fitted to the lowest 50%
of all frequencies—is clearly different from zero, the slope estimate is about −0.36 which
yields H = 0.68. This result corresponds to the previously calculated values of H .

The analysis was made for all the data sets, and the results are listed in Table 1.

Summary To summarize the results listed in Table 1, we conclude that:
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• The estimated values of the parameter H are definitely greater than 0.5 for all
cases.

• The values of H are nearly the same for all of the four analysis methods and for
all the data sets. The common value for it is about 0.7. (Apart from the last two
values for the FUNETSTA data sets.)

In spite of this, it would be too early to say that it follows from the results above
that the measured traffic is self-similar with self-similarity parameter 0.7. To establish
such a statement, we should carefully examine the applied analysis methods with their
preliminary conditions and confidence intervals as well as the structure of the analysed
data sets in more details. The applications of more robust and thorough methods (e.g.
Whittle methods, wavelet methods) are also recommended.

In the next section, we investigate the problems arising during the calculation of the
parameter H and determine those effects which can influence the results considerably.

2.2.3 Problems of testing

In practice, using measured data sets the estimated values of H obtained from different
analysis methods are influenced by the dependences on estimating technique, sample
sizes, time scales and data structure. These problems are discussed in [90, 92, 72] and
some examples are presented in this section.

The choice of Hurst parameter for a given scenario is not straightforward. Indeed the
Hurst varies considerably from customer to customer and over time. This ties in with
comments made by Paxson and Floyd about the predictability, or lack of it, in Internet
traffic [100]. In particular, the rate of change in the quantity and form of Internet traffic
over recent years has shown how difficult it is to predict the traffic of the future.

Several universities were monitored to examine the Hurst parameter of a number of
similar customers. 41 sites were monitored, each having a high-speed SMDS connection.
These were monitored simultaneously for 1 hour at a 10 second resolution. The Hurst
parameter was calculated using the rescaled adjusted range plot and variance time plot.

The Hurst parameter varied considerably between one access and another, despite
the supposed similarity in their environment. The distribution of Hurst parameter values
for these connections is shown below.

As expected from the notion of self-similarity, the aggregated traffic from all of the
sites mentioned above was still self-similar. (The average Hurst parameter of individual
sources weighted according to their mean was H=0.78; the aggregated traffic had a
parameter of H=0.8.)

To further illustrate the difficulty in assigning a fixed value to the Hurst parameter
for a particular customer’s traffic, the following two traffic profiles represent two differ-
ent busy periods for a single Frame Relay customer peaking around 1-2Mb/s. Traffic
measurements were taken at a 2 second resolution.

The first 1-hour profile has a Hurst parameter of approximately 0.54. The second
has a Hurst parameter of approximately 0.86. The graphs clearly illustrate the extreme
variation in the Hurst parameter of even a single customer. In this example clearly
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Figure 9: Distribution of Hurst Parameter for university traffic

Figure 10: Aggregated SMDS traffic
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Figure 11: Traffic at different times of day for single customer
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a major change in the usage had occurred. It may be argued that the self-similarity
should be calculated based on a longer period, averaging out some of these anomalies,
or alternatively that a two-second resolution is inadequate. However if the concept of
self-similarity is to be useful, then it must be valid across the timescales of interest, to be
able to relate the burst-scale characteristics to those found at the typical measurement
resolution.

During our analysis we usually assume that the statistical properties of the measured
cell stream are independent from time. This assumption is questionable, but—since the
greatest part of statistical analysis methods require stationarity as a basic preliminary
condition—it cannot be avoided. Strictly speaking, we assume that the measured process
is stationary in the wide sense which means that its mean is finite and independent of
time, and its autocorrelation function is finite and is invariant of time shift. (If we
decided to treat our measured data sets as nonstationary sequences it would be almost
impossible to make a comprehensive analytical study with meaningful results general
enough to use elsewhere. Furthermore, in the case of finite data sets it is not possible
to discriminate a stationary long-range dependent sequence from a nonstationary one.)

In this section we investigate the case when the assumption of stationarity does not
hold (i.e., there is a level shift present in the measured traffic traces.) We examine how
robust our statistical test is in case of a nonstationary cell sequence with a change in
the mean as a function of time.

Example 1 In this first simple model nonstationarity is introduced by adding a
CBR traffic to the second half of the measured data set. (Note, that this example rep-
resents not just a theoretical problem but a possible event in practice: while measuring
the network traffic suddenly a new source may start to emit cells with constant cell
rate.) Figure 12 shows the calculated IDC plots for these new multiplexed data sets.
2.8Mbps (CBR20—20% of the load of FUNET1) and 7Mbps (CBR50—50% of the load
of FUNET1) CBR rates were applied.
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Figure 12: IDC plot for FUNET1 multiplexed
with nonstationary CBR traffic.
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level shift.
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Discussion 1 The effect on the IDC plot is clearly visible. For the FUNET+CBR20
plot the upper part of the curve is moved up a bit as well as the lower segment shifted
down slightly. As a result, the calculated Hurst parameter is greater, about 0.72. For
the FUNET+CBR50 case the effect is sharper, the calculated value of Ĥ being 0.8.

Example 2 To understand the effects of level shift on the IDC plot more deeply,
we investigated a simple CBR model in this example. As a starting point we chose a
CBR traffic trace with the same rate as the mean rate of the FUNET1 traffic. The
nonstationarity was introduced by increasing the CBR rate by 10, 20 and 50 percent
abruptly at half time of the investigated time period. The IDC(t)value for an ideal CBR
source without jitter is zero for all t which cannot be plotted on a logarithmical scale.
The calculated IDC plots for the CBR traces with level shift can be seen on Figure 13.

Discussion 2 All the IDC curves are straight lines with slope 1. The only difference
is that the IDC values are higher when the level shift is stronger.

The simplicity of the examined CBR model makes it possible to calculate the IDC(t)
values analytically. (In practice, calculating the IDC plot for a finite data set means
evaluating a double sum to estimate the mean and the variance. The following results
are derived from this IDC estimator.) The IDC(t) for the above data sets is of the form:

IDC(t) =
(a1 − a2)

2

2(a1 + a2)
t,

where a1 and a2 are the cell rates for the first and second half of the data respectively.
For a1 6= a2 the IDC plot is given by:

log IDC(t) ' const+ log t, where const = log
(a1 − a2)

2

2(a1 + a2)

which gives us a straight line with slope 1.
The main result here is the fact that although the CBR data with level shift has noth-

ing to do with self-similarity, the estimated IDC is a monotonically increasing straight
line with slope 1.

Example 3 The first example is generalized here by replacing the CBR traffic with
a Poisson process. Again, the FUNET1 data was modified by adding a Poisson traffic
to the second half of the measured data to increase the mean rate by 20 and 50 percent.
The calculated IDC plots can be seen in Figure 14.

Discussion 3 The effect of nonstationarity in the plots is the same as in Example
1. The upper part of the curves moved up and the lower-left segments are shifted down
simultaneously, resulting in higher Hurst parameter estimates.

Example 4 To make the effect of level shifts on the IDC plot clearer, in this example
a simple but inhomogeneous Poisson process is examined which changes its intensity in
time. Here we consider the case when the Poisson source emits cells with rate λ1 and
suddenly changes its intensity to λ2. Figure 15 presents the analysis result for these data
sets. (For every process λ1 was set to 1 and λ2 changes as noted in the figure.)

Discussion 4 For such simple inhomogeneous Poisson processes the IDC estimate
can be derived analytically. Let λ1 and λ2 denote the intensity parameters of the process
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Figure 14: IDC plot for FUNET1 multiplexed
with a nonstationary Poisson traffic.
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Figure 15: IDC plot for inhomogeneous Poisson
processes.

for the two halves. Then, the IDC(t) value can be calculated as follows:

IDC(t) = 1 +
(λ1 − λ2)

2

2(λ1 + λ2)
t.

For the appropriate IDC plot for λ1 6= λ2 and t→ ∞ we get:

log IDC(t) ' const+ log t, where const = log
(λ1 − λ2)

2

2(λ1 + λ2)
.

This equation gives a straight line with slope 1 as an asymptote.
The main message from this example is again that a monotonically increasing IDC

does not necessarily come from the self-similar nature of the analysed data. Instead,
it comes from the nonstationarity present in the sample trace. We mention that a
linearly growing IDC curve over many time scales can also be created even with a
simple stationary Markovian model (e.g. with an Interrupted Poisson Process). In this
case the increasing IDC curve again nothing has to do with self-similarity.

Investigations have showed [90, 92] that the estimation of Hurst parameter can de-
pend on many characteristics and require the stationarity assumption to be hold. There-
fore the problem of ‘deceiving self-similar tests’ is a critical issue. These highlight the
problem of ‘how can we get the correct value for the Hurst parameter in practice?’.

Misinterpretation of results of statistical tests can lead to estaiblish wrong conclusions
and we may fail to give a useful characterization for real traffic.

2.2.4 Non-Stationarity of MPEG2 Video Traffic

It has been reported that VBR traffic belongs to the class of long-range dependent
processes (see, e.g. [10, 39]). This implies the weak stationarity of this traffic type
[10]. While our investigations confirm that VBR traffic displays signs of long-range
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dependence, they strongly call into question the assumption of weak stationarity [41].
Furthermore, we will examine the character of non-stationarity in the following sections,
which provides a basis for a new traffic model described in section 2.3.3.

The analysis is based on three traffic streams generated using the MPEG2 video
compression algorithm [42]. Each traffic stream contains approximately 154,000 data
points where each data point represents the total bit rate of one video frame (i.e. lu-
minance and chrominance information, motion vectors and overhead information). In a
video made from a movie original, both fields in each frame are identical. In our work,
these two fields were averaged (thus improving SNR) and the resulting data (720×288
pixels, 25 frames/s) was coded with an MPEG2 software coder. However, in order not
to overload the following discussion with side aspects of other MPEG2 coding schemes
we focuss our attention on the most simple one: III traffic, where all frames are coded
in intrafield mode.

For this investigation, the action movie ‘Star Wars’ was chosen. Among all existing
genres of movies, action movies might be the most demanding ones in terms of network
management, because of rapid scene changes, fast changing lighting conditions and the
like.

Recently it became evident that variable bit rate video traffic displays signs of long-
range dependence [10, 39], such as

• The autocorrelation ρk obeys a hyperbolic decay for large lags k: ρk
k→∞−→ c0k

−β

• The power spectral density s(ω) follows the law Γ(ω)
ω→0−→ c1ω

β−1 for small fre-
quencies ω.

• The variance σ2
n of the sample mean decreases more slowly than the reciprocal of

the sample size n: σ2
n = Var X̄n

n→∞−→ c2n
−β, where X̄n =

∑n
i=1Xi/n,

for some constants c0, c1, c2. The constant β ∈ [0, 2] indicates the type of dependence:
0 ≤ β < 1 indicates long-range dependence and 1 < β ≤ 2 indicates short-range
dependence. (The degree of persistence is expressed most often by the Hurst parameter
H = 1−β/2). However, long-range dependence is defined within the framework of weak
stationarity [9, 10].

Definition 2.1 A stochastic process X(t) is said to be weakly stationary if the moments
up to order 2 are finite and constant over time and if its covariance

E {(X(t0) − µ)(X(t0 + ∆t) − µ)}

depends only on ∆t, where µ is the mean.

Stationarity in conjunction with ergodicity allows one to infer statistical estimates
such as mean and variance or model parameters from a single realization of data, or in
our case a single time series. If this convenient assumption is violated, some measures,
such as mean and variance, may become meaningless. Indeed, it has been reported that
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the mean of a VBR video time series converges only slowly [39], which may be caused
by non-stationarity and not necessarily by long-range dependence. Inspecting the bit
rate profile of III traffic (see Figure 16) suggests that non-stationarity is a more likely
explanation of the observed long-range dependence [43].
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Figure 16: Bit rate profile of III traffic

2.2.5 Testing for Stationarity

Let X(n), n = 0, 1, 2 . . . , be a stochastic process with power spectral density Γ(ω). The
periodogram

Γ̂(ω) =
1

2πN

∣∣∣∣∣
N−1∑
n=0

(X(n) − X̄)e−jωn

∣∣∣∣∣
2

, (7)

where X̄ is the sample mean, converges in distribution to 1
2
Γ(ω)χ2

2 (see, e.g., [101])

for ω 6= 0,±π,±2π, . . . . This implies that Γ̂(ω) is for large N an unbiased estimate,
but not a consistent one, since limN→∞ Var Γ̂(ω) = Γ2(ω). However, it holds that the
periodogram ordinates Γ̂(ω1) and Γ̂(ω2) are approximately uncorrelated for two fixed
frequencies ω1 and ω2. These properties hold as well for long-range dependent processes
[9]. Applying a spectral window Λ(ω) gives a consistent estimate [101]

Γ̄(ω) =

+π∫
−π

Γ̂(ω)Λ(Θ − ω)dω, (8)

Choosing the Bartlett-Priestley spectral window [101] one obtains for the variance Var Γ̄(ω) ≈
6M
5N

Γ2(ω). Still the variance depends on the power spectral density itself. To overcome
this functional dependence, a logarithmic variance-stabilizing transformation is used [55].
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To first order accuracy one obtains

E
{
log(Γ̄)

} ≈ log(Γ), (9)

Var log(Γ̄) ≈ 2π

N

+π∫
−π

Λ2(Θ)dΘ, (10)

where ω 6= 0,±π, . . . . As a by-product the estimate log(Γ̄) is closer to normallity
than the untransformed one [55]. To verify (or reject) the assumption of weak sta-
tionarity the process X is split into I segments centered at times ti each of it has
length N . For each segment i the sample power spectral density Γ̄i(ω) according to
(8) is computed. Sampling the smoothed periodogram (8) at frequencies ωj = πj/N
(j = j0 + k∆j, k = 0, 1, . . . J) and taking the logarithm gives the two-dimensional ran-
dom variable Yij = log(Γ̄i(ωj)). The variate Yij is approximately normally distributed
and uncorrelated if the frequencies ωj as well as the times ti are sufficiently wide apart
[102]. Assuming approximate normallity and the Yij being uncorrelated in both dimen-
sions implies approximate independence of Yij. Therefore, we can use the analysis of
variance (ANOVA) technique (see, e.g., [55, 102]) to infer the underlying structure of
random process Yij

Yij = µ+ a(ti) + b(ωj) + c(ti, ωj) + ηij (11)

where the ηij are independent and identically normally distributed with zero mean and
variance σ2 defined by (10). The presence of c(ti, ωj) resp. a(ti) is tested using the
quantities

SI+R =

I∑
i=1

J∑
j=1

(Yij − Y·j − Yi· + Y··)
2 , (12)

ST = J
I∑

i=1

(Yi· − Y··)
2 , (13)

where the dot indicates the mean over the index it replaces, e.g. Y·j =
∑I

i=1 Yij/I. For
a stationary process we expect c(ti, ωj) and a(ti) to vanish. In this case SI+R/σ

2 resp.
ST/σ

2 are χ2-distributed with (I − 1)(J − 1) resp. (I − 1) degrees of freedom. The
hypothesis of stationarity is rejected if one of the test statistics exceeds the upper 1%
quantile of the corresponding chi-squared distribution.

Table 2 contains the results for III traffic, fractionally differenced white noise (FDWN)
[52], AR(1) with autocorrelation ρk = 0.90k and the scenic model [38]. FDWN has a
Hurst parameter of H = 0.8. AR(1) and FDWN are stationary series, whereas the scenic
model is non-stationary in the mean.

It can be seen that stationarity has to be rejected on the 1% level for III traffic and the
scenic model. FDWN and AR(1) are classified as stationary series. In fact stationarity
has to be rejected as well for IPP and IBBP traffic [43]. Figures 17 and 18 demonstrate
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Table 2: Test for Stationarity

N M j0 ∆j SI+R

σ2 χ2
ν,1% νI+R

ST

σ2 χ2
ν,1% νT

III 1024 512 200 16 6810.0 7888.0 7599 13376.8 191.3 149
SM 512 512 100 20 3694.3 5500.8 5260 7880.5 318.5 263
FDWN 1024 512 200 8 13743.0 15709.0 15300 130.8 192.4 150

AR(1),
Φ =
0.90

1024 512 50 16 7629.3 9009.1 8700 137.1 186.8 145

SM: scenic model FDWN: fractionally differenced white noise (H = 0.8)
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Figure 17: Q-Q plot of noise terms ηij

that the noise terms are normally distributed and uncorrelated for III traffic. It has
been argued that in the presence of long-range dependence this test might fail, because
the noise is not normally distributed and not independent. As a result the test quantities
were no longer chi-square distributed and the ratio F = ST /(I−1)

SI+R/((I−1)(J−1))
would not be

F -distributed. The F -ratio was computed from 52 series of FDWN of length 155,000
frames and H = 0.8. Using the same parameters N , M , j0 and ∆j as for III traffic
the F -ratio follows well an F -distribution. Hence, all conditions the test is based on are
met.

2.2.6 The Type of Non-Stationarity of VBR Video Traffic

The test of stationarity suggests that the scenic model and III have the same structure
E {Yij} = µ+ a(ti)+ b(ωj). In addition, the scenic model is non-stationary in the mean,
i.e. it shows jumps in the data rate. Indeed, inspecting III traffic on a shorter time scale
reveals the same behaviour (see Figure 19). This indicates that the convenient assump-
tion of weak stationarity has to be given up and long-range dependence must be seen as
an artifact of non-stationarity. This is further strongly supported by a publication by
Klemeš [56]. The process he investigated is called a shifting level process (SLP).
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Figure 18: 2D autocorrelation of noise terms ηij
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Figure 19: Section of III traffic

Definition 2.2 Let Yi be independent and identically distributed random variables with
mean µY and variance σ2

Y and possibly existing higher order raw moments µ′
Y,r. Let

∆Ti := ti+1 − ti (the epochs) be independent and identically distributed random variables
with density ft and mean µt. The stochastic process X(t) = Yi for ti ≤ t < ti+1

(i = 1, 2, . . . ) is then called a shifting level process.

Since these processes were introduced as an alternative explanation of the observed
long-range dependence of hydrological time series, their connection to the Hurst phe-
nomenon has been studied by several authors (see, e.g., [13]). The behaviour of moment
estimators for these processes can be found in [17].

Admittedly, the concept of non-statonarity has at first glance not much appeal and
seems to be a rather cumbersome one. However, for a process defined by (2.2) it can be
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shown that the empirical raw moments

M ′
X,r =

1

T

tn+1∫
t1

Xr(t)dt =
n∑

i=1

Y r
i

∆Ti

T
, (14)

where T := tn+1 − t1 and r = 0, 1, . . . , do exist with expectation

lim
T→∞

E
{
M ′

X,r

}
= µ′

Y,r. (15)

Even the autocovariance

γ(τ) =
1

T

tn+1∫
t1

(X(t) − µY )(X(t+ τ) − µY )dt (16)

exists for an infinitely long process

lim
T→∞

E

{
γ(τ)

σ2
Y

}
= 1 − τ

µt
+

1

µt

τ∫
κ

(τ − t)ft(t)dt, (17)

for positive τ ; κ is the shortest epoch length. The foregoing result is a generalization of a
result given by Mandelbrot for discrete distributions ft [74]. Hence, these processes are
asymptotically weakly stationary, which provides a reasonable basis for pratical work.
Assume now, that the epochs have a distribution with a Pareto shaped tail

ft(t) =




f(t) for 0 < κ ≤ t < t0,
ΘtΘ1
tΘ+1

for t ≥ t0,
(18)

where f(t) is some positive function, such that ft is a proper density, and t0, t1 are some
positive constants. It can be shown that the following theorem holds.

Theorem 2.1 A shifting level process has epoch distribution (18) if and only if the cor-
responding autocorrelation function shows long-range dependence with Hurst parameter
H = 3−Θ

2
.

Moreover, Mandelbrot demonstrates [74] that the power spectral density near the origin
of an SLP with distribution (18) follows the same power law as stated in section 2.2.4.
This demonstrates clearly that non-stationarity in the mean can cause long-range de-
pendence. Moreover, (18) gives enough flexibility to model short term behaviour as well
by specification of f(t).
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2.2.7 Summary

As a conclusion we emphasize that characterizing the network traffic by fractal models
we have to be very careful not to mistake actual non-stationarities with stationary fractal
behaviour. These effects can produce the same results to a lot of statistical tests. We
should note that there are promising methods which try to distinguish between non-
stationarity and long range dependence [9] or estimating the Hurst parameter in the
presence of some types of non-stationarities [107].

A number of cases in practice we can talk about local stationarity only and it is
important to specify the relevant time-scales of the stationer fractal behaviour. We
note that in some cases beside statistical evidence of fractal behaviour the physical
explanation of the traffic generation mechanisms can also support the idea of choosing
fractal models.
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2.3 Long-range dependent traffic models

2.3.1 Quasi-Markovian models

A discrete-time ATM traffic model which exhibits a long range dependence character is
presented in this section [23]. The process results from the superposition of an infinite
number of on/off sources which have an increasing mean on and off period duration. The
condition under which the process has the long range dependence property is a simple
function of the parameters of the on/off sources.

The traffic model The traffic model that is envisaged is defined in the framework
of Markovian Arrival Processes. For completeness reasons we recall the definition of a
Discrete-Time Batch Markovian Arrival Process (D-BMAP), the discrete-time version
of the BMAP defined in [96] and [70]. (For more details, we refer the reader to [11]).
Consider a discrete-time Markov chain with transition matrix D. Suppose that at time
k this chain is in some state i, 1 ≤ i ≤ m. At the next time instant k + 1, there occurs
a transition to another or possible the same state and a batch arrival may or may not
occur. With probability (d0)i,j, 1 ≤ i ≤ m, there is a transition to state j without an
arrival, and with probability (dn)i,j, 1 ≤ i ≤ m, n ≥ 1, there is a transition to state j
with a batch arrival of size n. We have that

∞∑
n=0

m∑
j=1

(dn)i,j = 1.

Clearly the matrix D0 with elements (d0)i,j governs transitions that correspond to no
arrivals, while the matrices Dn with elements (dn)i,j, n ≥ 1, govern transitions that
correspond to arrivals of batches of size n.
The matrix D =

∑∞
n=0 Dn is the transition matrix of the underlying Markov chain. Let

π be stationary probability vector of this Markov process, i.e.

πD = π, πe = 1,

where e is a column vector of 1’s.
The fundamental arrival rate λ of this process is given by

λ = π(

∞∑
k=1

kDk)e.

A D-MAP is a special case of a D-BMAP, where arrivals have a batch of size 1 (for
examples we refer to [11]).
Now we define the processes which are used to obtain the long range dependent process.
Consider a sequence (X(i))i∈N of independent on/off sources with the following charac-
teristics. Let 1 < b < a. Assume that both the on and off period of the process X(i)

are geometrically distributed with mean duration (a
b
)i, resp. ai. While on, the source
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generates a cell in a slot with probability p, with 0 < p < 1. Using matrix analytic
notations, X(i) is a D-MAP with parameter matrices

D
(i)
0 =

(
1 − (1/a)i (1/a)i

(1 − p)(b/a)i (1 − p) (1 − (b/a)i)

)

and

D
(i)
1 =

(
0 0

p(b/a)i p (1 − (b/a)i)

)
.

The matrix D(i) = D
(i)
0 + D

(i)
1 is the transition matrix of the underlying Markov chain

of state transitions. The stationary distribution of D(i) is given by

π(i) =

[
bi

(1 + bi)

1

(1 + bi)

]
.

The fundamental arrival rate λ(i) associated with X(i) is

λ(i) = π(i)D
(i)
1 e = p/(1 + bi).

From the definition of X(i) we see that for increasing i, both the on and off periods
become longer. This property of the process X(i) will be responsible for the long range
dependence of the envisaged process.
Let us now characterize the correlation structure of the process X(i). From [11], we know
that

Cov
(
X

(i)
1 , X

(i)
1+k

)
= π(i)D

(i)
1

((
D(i)

)k−1 − eπ(i)
)

D
(i)
1 e.

Hence one can easily verify that

Cov
(
X

(i)
1 , X

(i)
1+k

)
=

(
1 −

(
1

a

)i

−
(
b

a

)i
)k

p2bi

(1 + bi)2
.

In view of [11], p. 8, we know that a finite superposition Y (M) =
∑M

i=1X
(i) of D-MAPs

is a D-BMAP determined by the matrices

C
(M)
0 = D

(M)
0 ⊗D

(M−1)
0 ⊗ · · · ⊗ D

(1)
0 ,

...

C
(M)
i =

∑
kM+...+k1=i

1⊗
j=M

D
(j)
kj
,

...

C
(M)
M = D

(M)
1 ⊗D

(M−1)
1 ⊗ · · · ⊗ D

(1)
1 .
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The superposition Y (∞) is not a D-BMAP any longer, but since theX(i) are independent,
the expressions for the fundamental arrival rate λ(∞) and the covariance structure are
given by:

λ(∞) =

∞∑
i=1

p

1 + bi

and

Cov
(
Y

(∞)
1 , Y

(∞)
1+k

)
=

∞∑
i=1

(
1 −

(
1

a

)i

−
(
b

a

)i
)k

p2bi

(1 + bi)2
. (19)

Properties of the Process Y (∞) In this section the influence of the parameters a and
b on the correlation structure of the arrival process Y (∞) is examined.

Property 2.1 The arrival process Y (∞) is long range dependent if and only if b2 6 a.

Proof. Following Definition 13.4.1 in [105, page 326] we have long range dependence if
and only if the series is

∞∑
k=1

Cov
(
Y

(∞)
1 , Y

(∞)
1+k

)
(20)

diverges. Using (19) and changing the order of summation we deduce that the series
(20) diverges if and only if

∞∑
i=1

aibi − bi − b2i

(1 + bi)3 = ∞. (21)

This series is similar to a geometric one and hence it diverges if and only if b2 6 a. �
Property 2.2 There exist 0 < C1 < C2 <∞ such that

C1k
−β < Cov

(
Y

(∞)
1 , Y

(∞)
1+k

)
< C2k

−β (22)

with

β =
log b

log a− log b
. (23)

Proof. See [23]. �
Now we state the main result of this section, namely an explicit expression for the Hurst
parameter of the process Y (∞).

Property 2.3 The Hurst parameter H of the discrete-time arrival process Y (∞) is given
by

H =
1

2

(
2 − log b

log a− log b

)
. (24)
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Proof. Based on (22), we see that Cov
(
Y

(∞)
1 , Y

(∞)
1+k

)
decreases as k−β , with β =

log b

log a− log b
. Hence, from [105, page 327], we immediately obtain Equation 24. �

Clearly, if b2 6 a, then the Hurst parameter satisfies 1
2
≤ H < 1, a criterion for long

range dependence of the process Y (∞).
We will illustrate the above properties through numerical examples.

The Index of Dispersion for Counts of the Traffic Model In this section we investi-
gate the correlation structure of the process Y (∞) by means of the Index of Dispersion
for Counts (IDC).
Denote Nk the number of arrivals in an interval of length k. The Index of Dispersion
for Counts (IDC) at time k is defined to be the variance of the number of arrivals in an
interval of length k divided by the the mean number of arrivals in this interval, i.e.

I(k) =
Var(Nk)

E(Nk)
.

It is well known that for a renewal process I(k) = c21, for all k ≥ 1, where c21 is the
squared coefficient of variation of the number of arrivals in a slot. In particular for a
Bernoulli process, I(k) = 1, for all k ≥ 1.
Denote I(i)(k) the IDC of the process X(i) with limk→∞ I(i)(k) = J (i) and I(∞)(k) the
IDC of the process Y (∞), with limk→∞ I(∞)(k) = J (∞).
From [12], we know that

J (i) =
π(i)D

(i)
1 e − 3[π(i)D

(i)
1 e]2 + 2πD

(i)
1 Z(i)D

(i)
1 e

π(i)D
(i)
1 e

, (25)

with Z(i) the fundamental matrix of the Markov chain D(i) = D
(i)
0 + D

(i)
1 , given by

Z(i) = [I − (D(i) − eπ(i))]−1.

From the expressions for D
(i)
0 and D

(i)
1 given in Section 2, it is easy to show that

Z(i) =
1

(1 + bi)2

(
ai + bi(1 + bi) 1 − ai + bi

bi(1 − ai + bi) 1 + bi + aibi

)
.

Hence,

π(i)D
(i)
1 Z(i)D

(i)
1 e =

p2

(1 + bi)3
[1 + bi(ai − bi)].

Using this expression in (25), we obtain that

J (i) = 1 − 3
p

1 + bi
+ 2

p

(1 + bi)2
[1 + bi(ai − bi)]. (26)
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Now we compute J (∞), i.e. the limit of the IDC of the process Y (∞).
Since Y (∞) =

∑∞
i=1X

(i), we have that I(∞)(k) =
∑∞

i=1 I
(i)(k). Hence,

I(∞)(k) =

∑∞
i=1 cov(X

(i)
1 , X

(i)
1 ) +

∑∞
i=1 2

∑k−1
j=1

k−j
k

cov(X
(i)
1 , X

(i)
1+j)∑∞

i=1 E[X
(i)
1 ]

.

Taking the limit for k −→ ∞, we obtain

J (∞) =

λ(∞) − 3
∑∞

i=1(λ
(i))2 + 2p2

∑∞
i=1

1 + bi(ai − bi)

(1 + bi)3

λ(∞)
. (27)

From equation (27) it follows that the limit of the IDC of the process Y (∞) is infinite
if b2 6 a, which is exactly the condition under which the process has the long range
dependence property (see Property 2.1). This is in agreement with the criterion that a
process is long range dependent if its IDC is diverging.

Queueing Behaviour We consider a queue of the G/D/1-type which has the arrival
process Y (∞) as input. It turns out that the mean queue length is ∞. This result is
obtained by studying the sequence of queues with arrival processes

∑M
i=1X

(i). These
queues are of the D-BMAP/D/1-type. Consider the D-BMAP/D/1-queue with arrival
process Y (M) =

∑M
i=1X

(i). From now on we will drop the index M to keep the notation
simple. The stationary queue distribution x of the D-BMAP/D/1 queue satisfies the
following steady state equations

x = (x0,x1, . . . ) = (x0,x1, . . . )




D0 D1 D2 . . .
D0 D1 D2 . . .
0 D0 D1 . . .
0 0 D0 . . .
...

...
...

. . .


 (28)

together with

x e = 1. (29)

This leads to

X(z) (zI − D(z)) = (z − 1)x0D(z) (30)

with generating functions X(z) =
∑∞

n=0 xnz
n and D(z) =

∑∞
n=0 Dnz

n. It is important
to notice that D(z) = D(M)(z) · · ·D(1)(z). The mean queue length is given by the
expression X′e with X′ = d

dz
X(z)|z=1. The computations made in [70] result in the

following expression for the mean queue length

X′e =
(πD′′e + 2x0D

′e − 2ρ+ (2x0D + 2πD′)(I− D + eπ)−1D′e)

2(1 − ρ)
, (31)
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with D = D(1), D′ = d
dz

D(z)|z=1, D′′ = d2

dz2 D(z)|z=1 and π = π(M) ⊗ · · · ⊗ π(1) and

ρ =
∑M

i=1 λ
(i). We show that the right hand side of (31) is diverging for M −→ ∞.

Since πD′′e > 0 and 2x0D
′e > 0, and as the load ρ is bounded by some number,

independent from M , it is sufficient to investigate the behaviour of the factor

2x0D(I − D + eπ)−1D′e + 2πD′(I −D + eπ)−1D′e (32)

for M −→ ∞. First we notice that

(I − (D − eπ))−1 = I +

∞∑
k=1

(
Dk − eπ

)
. (33)

Furthermore, since

Cov (X1, X1+k) = πD′ (Dk−1 − eπ
)
D′e (34)

we have

πD′
( ∞∑

k=1

(
Dk − eπ

))
D′e =

∞∑
k=2

M∑
i=1

(
1 −

(
1

a

)i

−
(
b

a

)i
)k

bi

(1 + bi)2 (35)

The behaviour of x0D
(∑∞

k=1

(
Dk − eπ

))
D′e is a bit more elaborated. From [70], we

know that x0 = (1− ρ)g, with g the steady state vector of the matrix G, describing the
first passage times from one level to another. Hence,

x0 = (1 − ρ)u(M) ⊗ u(M−1) ⊗ · · · ⊗ u(1)

with u(i) the first row of the matrix D(i). Using the elementary properties of the Kro-
necker product ⊗, one obtains

x0D

( ∞∑
k=1

(
Dk − eπ

))
D′e = −(1 − ρ)

∞∑
k=1

M∑
i=1

(
1 −

(
1

a

)i

−
(
b

a

)i
)k

1

1 + bi
. (36)

Hence, the mean queue lenght is diverging iff

lim
M→∞

M∑
i=1

∞∑
k=0

(
1 −

(
1

a

)i

−
(
b

a

)i
)k (

bi

(1 + bi)2
− (1 − ρ)

1

1 + bi

)
= ∞. (37)

One can check this is the case iff b2 6 a, in other words, iff the arrival process Y (∞) is
long range dependent. This result is in accordance with the one obtained in [67].
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Figure 20: Influence of a and b on sum of covariances.

Numerical Examples

Example 1 In this example we illustrate Property 2.1. Consider two superpositions
of on/off sources, the first with parameters a1 = 5 and b1 = 2 and the second with
parameters a2 = 5 and b2 = 2.35. Application of Property 2.1 immediately shows that
contrary to the second superposition, the first superposition is long range dependent
(as b21 6 a1). This is illustrated in Figure 20, where the sum of covariances of the first
superposition clearly does not converge, while the second superposition does.

Example 2 In this example we consider the processes Y (M) =
∑M

i=1X
(i). We illustrate

the influence of the valueM on the behaviour of the sum of covariances
∑n

k=1 Cov(Y
(M)
1 , Y

(M)
k+1 )

of increasing n.
Let M = 6, 9, 14. In Figure 21, we see that for higher values of M , the convergence
of
∑n

k=1 Cov(Y
(M)
1 , Y

(M)
k+1 ) is slower than for smaller values. This result is in accordance

with Property 2.2, which states that the sum is divergent for M = ∞.

Discussion In this section we have introduced a discrete-time traffic model resulting
from the superposition of a sequence of on/off sources with increasing on and off period
duration. Under a simple condition, the traffic model exhibits a long range depen-
dence character. Moreover the Hurst parameter can be computed explicitly. Queueing
problems in which this process is involved can be easily handled by considering a matrix-
analytic approach. The correlation structure of the process is investigated by means of
the IDC and its limit. Here again closed form formulas are obtained. The proposed
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Figure 21: Influence of M on sum of covariances.

process will be used in future research to investigate the influence of long range de-
pendent traffic on delays and loss probabilities in queueing systems when merging with
Markovian traffic. Furthermore we will investigate how to choose the parameters when
matching this process with data obtained from measurements.

2.3.2 Superposed heavy-tailed ON/OFF models

In this section a discrete-time on-off source model is considered. We focus mainly on an
infinite-server queue model that arises when considering the superposition of a large (i.e.,
infinite) number of such sources. Various numerical examples are presented to illustrate
the distinction between short- and long-range-dependent traffic [60, 61].

The source model On-off sources alternate between two states: the on-state (one cell
generated per slot) and the off-state (no cells generated). The durations of the on- or off-
periods - generically denoted by τA or τB - are iid random variables (rv’s) characterized
by the probability density functions (pdfs) a(n) = Pr[τA = n] and b(n) = Pr[τB = n]
(n = 1, 2, . . . ) or the associated probability generating functions (pgfs)

A(z) = E[zτA ] =
+∞∑
n=1

a(n)zn and B(z) = E[zτB ] =
+∞∑
n=1

b(n)zn

respectively. Durations of on- and off-periods are mutually independent, their mean
values equal E[τA] = A′(1) and E[τB] = B′(1). Variances are given by σ2

A = Var[τA] =
A′′(1) + A′(1) −A′(1)2 and σ2

B = Var[τB] = B′′(1) +B′(1) − B′(1)2.
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Traffic characteristics The number of cells generated by a single source during slot k,
either 0 or 1, will be denoted by qk. The average of qk can be expressed as

λ = E[qk] =
E[τA]

E[τA] + E[τB ]

and its variance as σ2 = Var[qk] = λ(1 − λ). An important second-order traffic charac-
teristic is the so-called power spectral density (psd) S(f), which is the Fourier-transform
of the autocovariance function C(m) = E[(q0 − λ)(qm − λ)]. Here, it is given by

S(f) = σ2
(
1 +Q(ej2πf ) +Q(e−j2πf)

)
with

σ2Q(z) =

+∞∑
m=1

C(m)zm = σ2z
P (z) − 1

z − 1

and

P (z) =
A(z) − 1

A′(1)(z − 1)
· B(z) − 1

B′(1)(z − 1)
· [A′(1) +B′(1)](z − 1)

A(z)B(z) − 1

By definition [62], long-range dependence is present when

+∞∑
m=−∞

C(m) = S(0) = σ2

{
σ2

A

E[τA]
+

σ2
B

E[τB ]
− σ2

A + σ2
B

E[τA] + E[τB]

}
= +∞

This will be the case when, for instance, σ2
A = Var[τA] is infinite, given E[τA] is finite.

The main characteristic of long-rang-dependent traffic is its strong correlation structure,
which is exactly what the above formula expresses.

Sample distributions Throughout this document, three different distributions for the
on-periods will be used for illustrative purposes, as summarized in Table 3: a light-tailed

variance tail behavior

A < +∞ ∼ z−n
0

B = +∞ ∼ n−2.5

C < +∞ ∼ n−3.5

Table 3: Three different distributions

geometric distribution A, a heavy-tailed distribution B with infinite variance and a third
distribution C, also heavy-tailed but with finite variance. Including distribution C will
allow us to distinguish between ’long-range dependent’ features and features originating
from a ’heavy tail’. Mean values were set (arbitrarily) to E[τA] = 100.0 slots.
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Figure 22: Tail behavior, log Pr[τA = n]
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Figure 23: Tail behavior, log Pr[τA >
n] versus logn, for various
types of distributions.

Both distribution B and C are based on the hypergeometric function

F (α, β; γ; z) =
+∞∑
n=0

Γ(α + n)Γ(β + n)Γ(γ)

Γ(α)Γ(β)Γ(γ + n)n!
zn

More precisely, we used a pgf of the form

A(α, β; γ; z) = z
F (α, β; γ; z)

F (α, β; γ; 1)

The associated distribution has a heavy tail, in the sense that

Pr[τA = n] ≈ Const · n−(γ−α−β+1)

(This particular choice seems promising, since the pgf used is based on a well-studied
function for which numerical procedures are available [118] and three (real-valued) pa-
rameters are involved, which can easily be fitted to yield e.g. a given mean and tail
decay. Note that the pgf involved has a branch point at z = 1.)

In Figure 22, where the sample distributions were plotted, the slow decay of the tails
of distributions B and C clearly shows. In Figure 23, a log-log plot of the complementary
cummulative distribution, this is even more apparent.

The psds of sources with on-periods as above, are shown in Figure 24. A geometri-
cally distributed off-period was assumed for all cases, with mean 25.0 slots, yielding a
traffic intensity of 0.8 Erlang. It is known [62] that, for long-range dependent sources,
S(f) ∼ f−(1−ν) or logS(f) ∼ −(1 − ν) log f , when f → 0, while for short-range depen-
dent sources, logS(f) ∼ log S(0). Both types of behavior are clearly distinguishable in
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Figure 24: psd, logS(f) versus log f ,
for various types of sources.
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Figure 25: Autocovariance function,
C(m) versus m, for various
types of sources.

Figure 24. Note that while the tail of distribution C is also hyperbolic and thus ’heavy’,
it decays too fast to yield long-range dependence in the strict sense. Corresponding
autocovariance functions, obtained by numerical transform inversion, are given in Fig-
ure 25.

Superposition

N sources Assume N iid sources generate the aggregated traffic stream pk with mean
total arrival rate λT = E[pk] = Nλ. It is easily shown that the psd of the aggregated
process is given by S(N)(f) = NS(f), with S(f) the psd of a single source. Figures 26
and 27 show S(N)(f) for a superposition of 1, 2, 5 and an infinite number of sources. (The
latter case is treated in more detail below.) Figure 26 is for a short-range dependent
source of type A, Figure 27 for a long-range dependent source of type B. The total arrival
rate was kept constant at 0.8 Erlang by varying the mean duration of the (geometrically
distributed) off-periods.

The distinction between short- and long-range dependence is also clearly visible in the
sample traces presented in Figure 28. The figure was obtained by aggregating the traffic
over various timescales (1,10,100,. . . 106 slots respectively). The traffic was generated
by a superposition of 5 sources, again with total traffic intensity 0.8 Erlang. In long-
range-dependent traffic of type B, large fluctuations occur over large time-scales, while
in short-range dependent traffic of types A and C, fluctuations die out quickly as the
time scale increases.
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Figure 26: psd, log S(N)(f) versus log f ,
for a superposition of sources
of type A.
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Figure 27: psd, log S(N)(f) versus log f ,
for a superposition of sources
of type B.

The N → +∞ case An interesting case - from a mathematical point of view - is that
whereby the number of sources grows infinitely. As illustrated by Figures 26 and 27,
traffic characteristics quickly approach their limiting values as the number of sources
increases. For the psd, we find by taking a limit

S(∞)(f) = lim
N→+∞

S(N)(f) = λT

(
1 +Q(∞)(e

j2πf) +Q(∞)(e
−j2πf)

)
whereby

Q(∞)(z) = z
A∗(z) − 1

z − 1

The pgf A∗(z) is that of the residual duration of an on-period and is given by

A∗(z) =
1

E[τA]

+∞∑
n=0

Pr[τA > n]zn

Observe that the number of arrivals in a slot is now equivalent with the number
of customers in a discrete-time GI-G-∞ queue, the equivalent of the continuous time
M/G/∞ queue. One can show that the numbers of newly arriving ’customers’ in each
slot, i.e., the number of sources becoming active, are iid rv’s with a Poisson distribution
with mean λ∗ = λT/E[τA] and pgf exp{λ∗(z − 1)}. The service times of the customers
are also iid rv’s with pgf A(z), i.e., the pgf of the on-time distribution. By analyzing
this equivalent queue model on a slot-to-slot basis, it is quite straightforward to derive
e.g. that

C(m) = λ∗
+∞∑
k=m

Pr[τA > k]
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Figure 28: Aggregated traffic traces for source types A, B and C (left to right).

which is in full agreement with the expression for Q(∞)(z) derived above. It illustrates
once more that light-tailed on-periods lead to short-range dependence, since

Pr[τA = m] ∼ z−m
0 ⇒ Pr[τA > m] ∼ z−m

0 ⇒ C(m) ∼ z−m
0 ⇒

+∞∑
m=−∞

C(m) < +∞

On the other hand, for heavy-tailed on-periods one has

Pr[τA = m] ∼ m−q ⇒ Pr[τA > m] ∼ m−(q−1) ⇒ C(m) ∼ m−(q−2) ⇒
+∞∑

m=−∞
C(m) = +∞
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when 2 < q ≤ 3 (the lower bound being required for E[τA] to be finite). Note again,
however, that also for q > 3, as for traffic of type C, the autocovariance function may
decay quite slowly, i.e., correlation may extend over long time periods, notwithstanding
it does not lead to long-range dependence in the strict sense. Figure 29 shows a log-log
plot of the autocovariance function for the three different sample on-time distributions
and λT = 0.8.

One can also derive an expression for the pgf of the total number of cells generated
during m consecutive slots, namely

E[zp1+...+pm] = exp

{
λ∗

+∞∑
k=m

Pr[τA > k](zm − 1) + λ∗
m−1∑
k=0

Pr[τA > k](zk − 1)

+ λ∗
m−1∑
k=0

Pr[τA > k](m− k)zk(z − 1)

}

The first two sums in the RHS represent the contribution of ’old’ sources, i.e., sources
that were already active prior to slot 1. The last sum represents the contribution of
sources that started generating cells during slot 1 or later. Taking derivatives and
performing some algebra, one finds

Var[p1 + . . .+ pm] = m2λT − λ∗
m−1∑
k=0

Pr[τA > k](m− k)(m− k − 1)

which is in agreement with results obtained through a limiting procedure (omitted here).
From this, one can easily calculate (numerically) e.g. the index-of-dispersion for counts.
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For m = 1, one obtains

E[zp1 ] = exp {λ∗(z − 1)E[τA]} = exp {λT (z − 1)}
The distribution of the number of active sources or, equivalently, the total number of
cells generated in a random slot, is thus Poisson and function of the load λT only.
This marginal distribution is rather smooth and independent of the exact form of the
distribution of the on-periods. The latter does, however, strongly affect the correlation
structure of the process.

An appealing property of the GI-G-∞ arrival process is that the aggregation of two
or more such processes is again of that type. This is a consequence of the fact that the
arrival process of ’new sources’ is Poisson. The parameters of the aggregated GI-G-∞
arrival process are given by

λ∗ = λ∗1 + · · ·+ λ∗N

and

A(z) =
λ∗1A1(z) + · · · + λ∗NAN(z)

λ∗1 + · · · + λ∗N

From this, it is easily seen that the tail of the aggregated on-period distribution will
be dominated by the heaviest tale of the constituent distributions. In other words,
long-range dependent sources will ’dominate’ over short-range dependent ones.

Queueing In [60], two promising approaches to analyze the queueing behavior of traffic
of the type described above were briefly discussed: the Beneš approach and a slot-to-slot
approach. In this section, we present some further results on this matter, but have to
refer to future work for conclusive results.

Simulation results, shown in Figures 30 and 31, for a GI-G-∞ arrival process (with
intensity 0.8 Erlang) of type B and C respectively, give an indication of the magnitude
of the queues - denoted by the variable u - that can build up. For instance, from Figure
30, we learn that for the long-range dependent case, the queue exceeds the order of 105

cells during 10% of the time. For the other case, the magnitude of the queue is about a
hundred times smaller, but still very large. Although the simulations are too crude to
draw detailed conclusions, the figures already point towards a hyperbolic decay of the
queue contents (a straight line in a log-log plot).

The Beneš approach The Beneš approach yielded the following expression for the
complementary cummulative distribution of the system contents.

Pr[uk+1 > m] =
+∞∑
l=0

Pr[pk + pk−1 + . . .+ pk−l > m+ l|uk−l = 0]Pr[uk−l = 0]

Intricate questions are what the link is between this general result and the general ob-
servation made in e.g. [46, 66] concerning the impact of the psd of the traffic at low
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Figure 31: log Pr[u > n] versus log n,
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traffic of type C.

frequencies on its queueing behavior, and how, for instance, the index of dispersion for
counts of the traffic relates to the probabilities in the RHS of the above formula. A (nor-
mal ?) approximation of the involved distribution, based on only first- and second-order
characteristics of the traffic process, is an option that seems worthwhile considering.

One can show that, for the GI-G-∞ model,

E[zpk+pk−1+...+pk−l|uk−l = 0] = exp

{
λ∗

l∑
n=0

Pr[τA > n](l + 1 − n)zn(z − 1)

}

(Note that the condition uk−l = 0 determines the evolution of the traffic process in slots
k − l, . . . , k. It implies that no sources were active just prior to slot k − l.) After some
further manipulations, one obtains the following result

Pr[uk+1 > m] = (1 − λT )

+∞∑
l=1

+∞∑
k=m+l

Res

[
1

zk+1
exp

{
λ∗

l−1∑
n=0

Pr[τA > n](l − n)zn(z − 1)

}]
z=0

It still remains to be determined if replacing residues around z = 0 by residues around
the other singularities (poles or branches) of the function involved, will lead to ’practical’
results, or if an accurate numerical transform inversion is feasible.

A slot-to-slot approach The queueing of discrete-time on-off sources was studied by
a slot-to-slot approach in e.g. [122] for a finite number of sources (with geometric off-
times), and in e.g. [123] for a infinite number of sources. The model in the latter paper
is more general than the model of Section 2.3.2, in that the number of new sources
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becoming active during a slot can have an arbitrary distribution. The special case of
a Poisson distribution then leads to the GI-G-∞ arrival process considered here. It is
worth noting that the Poisson distribution has a number of properties which simplify
the analysis and results to some extent.

The analysis can proceed as follows. Consider Pk(z, x1, x2, . . . ), the joint pgf of uk,
the number of cells in the system, and of vi,k, the numbers of active sources which will
still generate a single cell per slot during the i slots to come, all observed at the beginning
of slot k. One can then establish the following relation.

Pk+1(z, x1, x2, x3, . . . )

= z−1 exp

{
λ∗

+∞∑
k=1

a(k)(xk − 1)

}(
Pk(z, z, zx1, zx2, . . . ) + (z − 1)Pk(0, z, zx1, zx2, . . . )

)

The pgf Pk(0, x1, x2, . . . ) can easily be obtained by observing that the queue being empty
at the beginning of a slot (argument z = 0) implies no sources generated cells during
the previous slot. (Note the connection with a similar observation made for the Beneš
approach.) This straightforwardly leads to

Pk(0, x1, x2, . . . ) = Pr[uk = 0] exp

{
λ∗

+∞∑
k=1

a(k)(xk − 1)

}

We will not go further into the details of the analysis here, but it is possible to derive
from the above two formulas an expression for the mean buffer contents in regime. It is
given by

lim
k→∞

E[uk] = λT +
λ2

T

2(1 − λT )

(
E[τA] +

σ2
A

E[τA]

)

This expression can also be found from that in [122] by a limiting procedure, or from
that in [123] by assuming a Poisson arrival process for new sources. The formula contains
the variance of the durations of the on-periods and is infinite for on-time distributions
having infinite variance. This infinite mean points towards a (very) slowly decaying tail
for the queue size distribution, as indicated by the simulation results.

We believe - but couldn’t prove yet - that, in general, the following goes

Pr[τA = m] ∼ m−q ⇒ Pr[u = m] ∼ m−(q−1) ⇒ Pr[u > m] ∼ m−(q−2)

while

Pr[τA = m] ∼ z−m
0 ⇒ Pr[u = m] ∼ z∗0

−m ⇒ Pr[u > m] ∼ z∗0
−m

Similar observations have been made for fluid-flow models, see e.g. [15]. Of course,
in order for this result to be of ’practical’ value, one should also be able to derive the
constant of proportionality, i.e., the ’intercept’ of the curve m−(q−2) or z∗0

−m. (In e.g.
[123] it was assumed that the dominating singularity of the pgf of the system contents
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is an isolated pole z∗0 , somewhere in the interval (1,+∞) of the real line, which leads
to geometric tail decay. However, this assumption is no longer valid when heavy-tailed
on-time distributions are involved, since the corresponding pgf’s have a branchpoint at
z = 1. It remains to be studied how the approach has to be modified to deal with this
case.)

Discussion The analysis of the discrete-time on-off source model and its use in studying
the phenomenon of long-range dependence is presented. Various numerical examples
clearly illustrated the distinction between short- and long-range-dependent traffic.

A limiting model for the aggregated traffic, the GI-G-∞ queue, was introduced. It
was shown to have a number of nice mathematical properties, which might considerably
simplify a future analysis of the queueing behavior of that traffic.

Two approaches towards this analysis, the Beneš approach and a slot-to-slot ap-
proach, were outlined. Naturally, both approaches are related, since they pertain to the
same model.
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2.3.3 Shifting level models

Some cases in practice long range dependence can be seen as an artifact of non-stationarity.
For example, the observed long-range dependence of VBR traffic in section 2.2.4 can be
well explained by shifting level processes. These processes are non-stationary on any
finite time scale but converge to weak stationarity in the long run. Based on shifting
level processes a new traffic model is introduced [41] and its implications are addressed
in this section.

Modeling VBR Traffic The shifting level process introduced in section 2.2.4 is based
on the assumption that Yi and ∆Ti are independent. The validity of this assumption
for III traffic can readily be checked by resampling without replacement one of the
processes and keeping the sampling order of the other one unchanged. From Figure 32
it can be seen that much of the dynamical behaviour of III traffic is retained, if the
epochs are resampled without replacement and the sequence of bit rates Yi during an
epoch remains unchanged. In contrast, Figure 33 shows that the dependence structure
is destroyed, if the Yi are resampled without replacement and the sequence of epochs
remains unchanged.
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Figure 32: Resampling of ∆Ti in III traffic

Both figures prove that Yi and ∆Ti are dependent processes. A further analysis of
the individual processes shows that both of them can best be modeled by fractionally
differenced white noise (with H = 0.8 for epochs and H = 0.95 for the mean bit rates)
passed through an ARMA(1,1) filter. Since the original processes are not normally
distributed (see Figure 34), one has to employ the probability integral transformation
[93] to match the sampled distributions.

Figure 35 shows the autocorrelation function of III traffic along with the expected
autocorrelation of the model and its minimum and maximum deviation from the expec-
tion. Figure 35 and Figure 36 prove that the new model captures well the behaviour of
VBR traffic.
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Figure 34: Distribution of ∆Ti for III traffic

Some Implications In earlier work it was assumed that VBR traffic can be modeled by
ARMA or Markov processes. Many results for dimensioning network queues are based
on this assumption. Beran et al [10] point out “ . . . that the performance of queueing
systems with long-range dependent input streams can be drastically different from the
performance predicted by traditional short-range dependent models”.

Simulations of VBR traffic with the new model have confirmed the slow convergence
of the mean observed in [39]. Moreover, the confidence intervals obtained from these
simulations are rather large for mean and standard deviation. This calls the meaning
of simple traffic descriptors, such as mean and variance, into question at least in the
case of live broadcasting. For pre-recorded events the situation is friendlier, since all
information for the network can be extracted prior to transmission.

However, the broadcaster has to deal with a non-stationary process, but not neces-
sarily the network. Simulations have shown that a superposition of VBR sources gives
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Figure 36: (a): III traffic, (b) New model
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a weakly stationary and long-range dependent traffic stream. This implies whenever a
large number of VBR traffic streams are mixed the Hurst parameter might be an ap-
propriate measure. This situation changes if the number of mixed traffic streams is low.
Then the non-stationarity dominates and the mixed stream can stay for a long time on
a high bit rate level; a scenario which cannot be captured by conventional long-range
dependent models, such as fractionally differenced white noise.

Discussion Based on a formal statistical test and by comparison with other time series
it was shown that III traffic is non-stationary in the mean (see Section 2.2.4). This type
of non-stationarity is best explained by a shifting level process, which is asymptotically
weakly stationary. A simple resampling experiment proved that the individual processes,
which form the shifting level process, are correlated. The correlation structure can be
modeled by fractionally differenced white noise. It was shown that this model matches
accurately the dependence structure of III traffic. It was pointed out that conventional
long-range dependent models are accurate if the number of aggregated traffic streams is
sufficiently large. However, a single stream is non-stationary and simple traffic descrip-
tors may be insufficient.
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2.4 Queueing performance of long-range dependent ATM traffic

There are different concerns about whether LRD is an important traffic characteristics
for cell loss estimation or not [29, 45]. We investigate this question and try to identify the
relevant correlation time scales of actual measured traffic. We have used a large amount
of long traffic traces taken during a trial on the Swedish ATM wide area network and
performed LRD, queueing and shuffling analysis [91, 117] in order to investigate

• the effect of LRD on cell loss,

• the relevance of different time scales on cell loss,

• the effect of different buffer sizes on relevant time scales, and

• the effect of different loads on relevant time scales.

2.4.1 ATM measurements

LAN interconnection is one of the most popular services provided by Telia, the Swedish
network operator, on its ATM wide area network. Apart from business customers,
different parts of the Swedish University Network (SUNET) are also attached to the
Swedish ATM WAN. The aggregated traffic on the SUNET were analyzed during summer
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Figure 37: The configuration of measurements on the SUNET.

1996 in the framework of a common trial between the SUNET community and Telia
Research. The LAN traffic of universities in the northern region, around Uppsala are
connected to an FDDI backbone which is connected via R1, R2 routers and a 34 Mbps
PDH link to the ATM backbone in Stockholm (Figure 37). This network joins the
northern LANs of SUNET to the international Internet backbone and to the southern
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university networks around Göteborg. A CBR connection with 90 000 cps (38.16 Mbps)
cell rate was established on the SDH link between the routers R4 and R5 for the trial. The
measurements reported here were performed on the connections between Uppsala and
Göteborg. ATM traffic streams were duplicated by means of optical splitters avoiding
impacts on original traffic flows. The duplicated traffic streams were routed on dedicated
links to Telia Research in Haninge, where almost one hundred traffic traces were collected
with more than 8 million cell arrivals in each trace using a non-commercial custom built
measurement instrument developed in the RACE Parasol project [82].

These connections used Telia’s Guaranteed Traffic Class thus the influence from
other traffic in the network was negligible. A good assumption is that the traffic was
an ordinary mix of common Internet traffic types such as HTTP, FTP, telnet, chat,
IPphone etc.

To estimate the Hurst-parameter H , the R/S and variance-time analysis [9] were
performed for 45 data sets. The obtained values of H are plotted on Figure 38. To
get more information about the Hurst-parameter of the measured traffic, H is plotted
against the average load of the traces. As can be seen on the figure, H varies within
the range (0.8, 1) and does not depend significantly on the load. Figure 39 reveals an
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Figure 38: Estimated values of H as a func-
tion of traffic load.
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Figure 39: R/S values plotted against the
logarithm of block size.

interesting phenomenon, namely, that there is a knee-point in the R/S diagram that
separates two linear regions of sample points. Since LRD is an asymptotic property,
the linear region to the right (sample points marked with an ’x’) was used to determine
the estimate of H . The same knee-point was found in all the data sets. The origin of
this behaviour could be revealed by examining the burstiness structure of the data more
deeply.

2.4.2 Relevance of time scales in queueing

An important question is what is the impact of LRD on queueing. Several engineering
issues, such as buffer dimensioning and traffic control, are related to this question which
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makes it extremely important. There are two opposing viewpoints on this problem.
One claim is that the queueing performance is determined by the time scale of busy
periods of the queues and there is no practical impact of correlations above this time
scale [45, 50, 57, 108]. The contradicting claim is based on several studies [29, 62] and
states that LRD is one of the main characteristics of the traffic with significant effect
on queueing behaviour. In this section we present some experimental results in order to
clarify this question.

Queueing set-up In the performance analysis we used the queueing set-up shown in
Figure 40. The pre-recorded traces were taken from our SUNET database as described
in section 2. The correlation structure of the original data was artificially modified
by a ‘shuffler’ (see next section). The functionality of this shuffler was investigated by
computer simulation in our experiment. The QoS measures under investigation were the
complementary queue length distribution and the cell loss ratio (CLR).

B

SUNET

database

shuffler
P(Q>q)

r
m

Figure 40: Queueing set-up.

External shuffling In our analysis, external shuffling was used as a tool to modify the
correlation structure of the measured traffic traces. Using the terminology of [4, 29], we
call ‘external shuffling’ the following method. First, divide the sequence of interarrival
times2 into blocks of size m. For a measured traffic trace containing N cell arrivals, there
are N/m such blocks. Then the order of the blocks is shuffled, while preserving the cell
sequence inside each block. Thus, for different values of m we preserve the short-range
correlations (up to lag m) while eliminating the long-range correlations (beyond lag m).

Therefore by plotting the complementary queue length distributions for the original
and the shuffled traces with different block sizes we have a simple tool to investigate the
effect of short-term and long-term correlations in queueing (see Figure 41).

Queueing properties of LRD input In case of LRD traffic input, the tail of the com-
plementary queue length distribution decays slower than exponentially. The uppermost
solid line related to the original traffic trace in Figure 41 shows this phenomenon. (The

2Besides the permutation of a sequence of interarrival times, one could perform the same shuffling on
the sequence of the number of arrivals in consecutive time slots [4].
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buffer size was set to 4000 cells and the service rate was chosen so that the utilization ρ
was 0.7. The shuffling block size m is shown on the figure for each simulated curve.) By
shuffling the input traffic, we can observe that if we increase the block size the curve ap-
proaches the distribution curve of the original trace. It means that we can find the time
scale of the relevant correlations, i.e., the block size of shuffling where the distribution
is approximately the same as for the original case, which are important for queueing.
It can also be concluded that beyond that time scale there is no significant effect of
correlations. In our case this time scale is in the range of 4–5 seconds (block size of 105)
for load 0.7. This finding is in accordance with the results reported in [45].

Impacts of LRD on cell loss The queue length distribution in the infinite buffer case
gives (almost) always an upper bound on the cell loss ratio (CLR) for the finite buffer
case. In practice, the latter is of interest. To investigate the effects of LRD on CLR, we
performed simulation studies with the measured traces as input for three different buffer
sizes (512, 4000 and 15000 cells). The rate of service was set to obtain utilizations 0.7
and 0.9. The results are plotted on Figure 42.

We can observe in Figure 42 that there is an upper time scale determined by the
buffer size and the load where there is no effect of correlations on cell loss if we go beyond
that time scale. For example, in our experiments above cell lag 105 (approximately 5
seconds) the cell loss curves are practically constant even for the large (15000 cells)
buffer case. It supports our finding derived from Figure 41, namely, that there is a time
scale which determines the biggest lag of correlations which has effect on the cell loss.
However, this upper time scale seems to be dependent on many parameters. First, it
depends on the buffer size, i.e. the bigger the buffer the bigger the upper time scale.
For moderate and large buffers there is a sharp cut-off in cell loss as a function of the
shuffling block size but for small buffers the appearance of this upper time scale is not
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very pronounced. Secondly, this upper time scale is also dependent on the load, the
curves are shifting left as the load increases although the shifting of cut-off lag is not
significant. In our experiments we can observe that the cut-off lag is always above the
buffer size but typically not more than one decade above the buffer size. These findings
give us simple practical engineering rule of thumb for estimating the range of relevant
correlation time scale. A comprehensive study of these investigations with many traffic
traces and queueing conditions is performed in our research but the detailed presentation
of these results is beyond the scope of this paper.

2.4.3 Summary

We reported a traffic measurement experiment on SUNET ATM WAN. The recorded
long cell traces that cover many time scales were used for LRD analysis and to investigate
the question how LRD behaviour influences cell loss in different queueing environments.
The impacts of correlations of different time scales were analysed by using external
shuffling with different block sizes.

Our basic finding is that there is an upper time scale which determines the range of
correlation of interest from a cell loss point of view. This time scale sensitively depends
on the buffer size and slightly depends on the load but roughly speaking it is not bigger
than ten times the buffer size. By using this simple engineering rule we have a fast
approximation about the time scales of queueing interest. The detailed analysis and the
development of an accurate approximation of the upper time scale is the topic of our
present and future research.
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2.5 Queueing performance of synthetic self-similar traffic

A queueing analysis [72] is presented in this section using Fractional Brownion Motion
input traffic which is an exactly self-similar process.

2.5.1 FBM model

Fractional Brownian motion (fBm) has been extensively used to model self-similar traffic
[4,5]. Consider a fBm process Z(t) with Hurst parameter H in [1/2,1). Let A(t) denote
the number of arrivals from a traffic stream over time (0, t], given by

A(t) = mt+
√
maZt

where m > 0 is the mean rate, and a is the coefficient of variance. Consider a single
buffer of length B and service rate C.

Figure 43: ATM Multiplexer

The queue length distribution may be approximated by a Weibull distribution given
by Norros [97].

P (Q > B) ∼ exp

{
−(C −m)2H

2κ2(H)am
B2−2H

}

where κ(H) = HH(1 −H)1−H

A further step can be made using the Bahadur-Rao theorem [30] to give the following
for the queue length distribution given a single traffic source.

P (Q > B) ∼ 1√
2πσt∗θt∗

exp

{
−(C −m)2H

2κ2(H)am
B2−2H

}
,

where θt∗ =
B + Ct∗ −mt∗

am(t∗)2H
, σ2

t∗ = am(t∗)2H

2.5.2 Cross-over point

For small buffers the self-similar traffic actually experiences a lower cell loss than Marko-
vian traffic. The crossover point at which the self-similar traffic experiences the same
cell loss as random traffic is dependent on the free capacity and the Hurst parameter.
It is not (directly) dependent on the utilization or the variance. (The corresponding cell
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Figure 44: STM-1 link

loss at which the cross-over occurs however is dependent on utilization and the variance.)
The value of the buffer size at which the cross-over occurs is given by

B = (C −m)(2HH(1 −H)1−H)
2

1−2H = (C −m)(4κ2(H))
1

1−2H

Since H ∈ [1/2, 1),

B

C −m
∈ (1/4, 1)

For example, consider an STM-1 link subject to self-similar traffic at 85 load (so
m=132Mb/s). Assume the variance at a 1 second timescale is 25(Mb/s)2. The cell loss
for streams of different Hurst parameter is shown in Figure 44 for varying buffer size. It
should be noted that this is an approximation for cell loss based on the buffer occupancy
of an infinite queue.

The cross-over points where self-similar and Gaussian traffic have the same cell loss
occur at the same queue size regardless of variance, though clearly the cell loss at this
point is lower with smaller variance. Figure 45 shows how the buffer size at which the
self-similar traffic has lower cell loss varies with the Hurst parameter and load.

The self-similarity only becomes an issue (in terms of experiencing worse QoS than
Markov traffic models would predict) when the utilization is very high, or when the
Hurst parameter is near to 1. Previous characterization suggests that most data traffic
has a Hurst parameter around 0.7− 0.85. Suppose we have a traffic source, with known
mean m, variance v at 1-second timescale, QoS 10−7, and Hurst parameter H. Then the
cross-over point occurs when

B2 =
1

2
γ ln(10)ν(4κ2(H))

1
1−2H ∈

(
1

8
γ ln(10)ν,

1

2
γ ln(10)ν

)

The following graph shows the buffer size at which the cross-over point occurs as
the variance changes, with a cell loss probability of 10−6, 10−9 and 10−12. If sources
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Figure 45: Cross-over point for STM-1 link

similar to the SMDS traffic mentioned above were multiplexed together, to give an 85
load on an STM-1 link, the variance at the 1-second timescale over the busy hour would
be approximately 25(Mb/s)2. This corresponds to a minimum cross-over point with
a buffer size of approximately 15,000-21,000 cells, depending on the CLR. Even if the
buffer is twice this, traffic will only experience a higher cell loss rate than Markov traffic
of the same variance if the Hurst parameter H > 0.82.

For buffers smaller than this, a Markov model would provide a pessimistic estimate
for the cell loss, and hence over-dimension the network. Only if the buffer is larger than
this would the self-similarity become an issue.

Given a switch with buffer size B and service rate C, let r be the utilization that can
be achieved while maintaining a cell loss ratio (CLR) of 10−7. Let v1 be the variance of
the traffic if it was scaled up to 155 Mb/s mean. Then for a utilization r, the variance is
given by v = v1r

2H . Using the large deviation approximation, the maximum utilization
that maintains a CLR of 10−7 is given by

1

ρ
= 1 +

[
2γ(ln 10)κ2(H)ν1

C2HB2−2H

] 1
2H

Figure 47 shows the utilization that may be achieved on an STM-1 link for various
values of the Hurst parameter and varying buffer size. The variance of the traffic source
is chosen such v1 = 25(Mb/s)2 using the notation above.

For an STM-1 link with traffic satisfying the above assumption regarding variance,
and buffers of less than approximately 20, 000 cells, dimensioning according to Gaussian
approximations will always err on the safe side. For a lower cell loss the cross-over point
occurs at a larger buffer size.
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Figure 46: Minimum cross-over point for a given QoS

Figure 47: Maximum utilization to maintain 10−6 CLR
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Figure 48: Cell loss using fGn model down to different timescales

2.5.3 Simulation

A self-similar background traffic generator has been implemented in Simula for use within
an existing ATM network simulation model. The primary purpose of this was to model
background data traffic, and to determine the effect of self-similar traffic on other traffic
sources. The self-similar traffic on its own was found to fit well with the theory shown
above, though a couple of observations were made. Self-similar traffic was simulated
using fBm to determine the rates down to a millisecond timescale. At a finer timescale
(< 1ms), traffic is assumed to have a Poisson arrival process, with the rate determined
by the fBm model. The simulation used a combination of methods to produce fractional
Gaussian noise, firstly using the Discrete Time Fourier Transform method [99] to gen-
erate fGn rates at a 1-second timescale for the duration of the simulation, and secondly
the Random Midpoint Displacement (RMD) algorithm [8] to calculate the rates at a
sub-second timescale as they were required. This seemed to be fairly stable, in that
changes to the timescale at which the Poisson arrival assumption is made had relatively
little effect on the resultant cell loss rates, up to a point (see Figure 48). The lower
than expected cell loss is due in part to input traffic being truncated at 155Mb/s in this
experiment. Figure 48 shows the difference that was made by changing the timescale
below which Poisson arrivals are assumed.

Figure 49 shows a comparison of simulation against theory for a single queue subject
to a self-similar traffic stream. In this example, the link has capacity C=100 Mb/s,
and the traffic source has m=90 Mb/s, v=16(Mb/s)2, and H = 0.8. The queue length
distribution for Gaussian traffic is also included. (The load on the link is deliberately
high so that a significant number of cell losses might be seen by the simulation.)

The Large Deviation approximation appears to be a good approximation to the
queue length distribution, however it is still an overestimate, and hence the buffer sizes
discussed above at which self-similarity results in higher cell loss are an underestimate.
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Figure 49: Comparison of simulation and theory

It should be noted that the simulation here is trace driven, and does not take account of
real-time changes in the traffic as a result of controls detecting congestion in the network
and adapting accordingly. Simulating such end-to-end controls for all traffic over an
STM-1 link is not practical though, so we assume traffic has been shaped the way it
is by congestion and multiplexing elsewhere in the network, and handle the resultant
trace on the assumption that there is minimal cell loss. It should also be noted that
despite a run-time of over 109 cell slots, the results still show a tail-off around 10−4 cell
loss for H=0.8. Due to long-term fluctuations in the traffic, simulation of self-similar
traffic requires very long run times to get reasonable accuracy. On the other hand, as H
was decreased, high peaks in the traffic profile also caused significant problems for our
simulation, increasing the run-time.

2.5.4 Summary

For typical buffer sizes, self-similar traffic actually experiences a lower cell loss than
Markovian traffic with the same variance at a measurable timescale (say, 1 second).
Only core network dimensioning has been considered here. The FGN approximation
assumes free traffic, in that traffic is not controlled as a result of feedback concerning
network utilization. Users are unlikely to make this free traffic assumption on their access
class, on the basis that an access will often be picked either to handle the anticipated
peak (for Real Time services), or to be ’sufficient’ in some way (for Non-Real Time
services), relying on feedback, say at the TCP layer, to control the traffic. The switches
that are of concern regarding cell loss are therefore the core switches where traffic has
been aggregated. No distinction has been made regarding VBR/ABR/UBR, and this
section treats all of these together.
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3 Spatial traffic characterization

The design of third generation mobile communication networks faces three major chal-
lenges: first, there is the tremendous world wide increase in the demand for mobile
communication services. Second, the main resource in wireless systems, i.e. the fre-
quency spectrum, is extremely limited. And third, new access technologies like Space
Division Multiple Access (SDMA) and Code Division Multiple Access (CDMA) require
new mobile network planning methods. Since these challenges are strongly intercon-
nected, they can only be addressed by an integrated concept, cf. [113], in order to obtain
an efficient, economic and optimal mobile network configuration.

The primary task of mobile system planning is to locate and configure the facilities,
i.e. the base stations or the switching centers, and to interconnect them in an optimal
way. To achieve an efficient and economic system configuration, the design of a mobile
network has to be based on the analysis of the distribution of the expected teletraffic
demand in the complete service area. In contrast, the traffic models applied so far for
the demand estimation, characterize the teletraffic only in a single cell or they are too
complex for practical use in the planning process. Therefore, the demand based de-
sign of mobile communication systems requires a traffic estimation and characterization
procedure which is simple as well as accurate.

We first describe the traffic source models used so far in mobile network design and
define a geographical traffic model which obeys the geographical and demographical
factors for the expected teletraffic in a service region. Subsequently, we introduce the
demand node concept. This is a novel technique for the representation of the spatial
distribution of the teletraffic, which uses discrete points. We also outline a traffic char-
acterization procedure which can provide a demand node distribution from publicly
available geographical data. To generate the demand nodes, we introduce a recursive
partitional clustering algorithm and validate the demand node concept by data from
a cell structure of an operating mobile network. Finally, we outline how the demand
concept can be applied for locating base stations [115].

3.1 Traffic estimation

In mobile communication networks the teletraffic originating from the service area of
the system can be described mainly by two traffic models which differ by their view
of the network. a) The traffic source model, which is also often referred to as the
mobility model, describes the system as seen by the mobile unit. The traffic scenario
is represented as a population of individual traffic sources performing a random walk
through the service area and randomly generating demand for resources, i.e. the radio
channel. An overview on these models is provided in Section 3.1.1. b) In contrast,
the network traffic model of a mobile communication system describes the traffic as
observed from the non-moving network elements, e.g. base stations or switches. This
model characterizes the spatial and temporal distribution of the traffic intensity E,
measured in Erlangs, in the two-dimensional service area. Both traffic models are used
in mobile communication system design. Particularly the latter model is of principal

68



interest when determining the location of the main facilities in a mobile network, i.e.
the base stations and the switching centers. These components should be located close
to the expected traffic in order to increase the system efficiency. We will focus in greater
detail on this type of models.

3.1.1 Traffic source models

Due to their capability to describe the user behavior in detail, traffic source models are
usually applied for the characterization of the traffic in an individual single cell of a
mobile network. Using these models, local performance measures like fresh call blocking
probability or handover blocking probability can be derived from the mobility pattern.
Additionally, these models can be used to calculate the subjective quality-of-service
values for individual users.

A widely used single cell model was first introduced by [51]. Their model assumes
a uniformly distributed mobile user density and a non-directed uniform velocity distri-
bution of the mobiles. Under this premise, performance values like the mean channel
holding time and the average call origination rate in a cell can be computed.
[28] characterize the mobile phone traffic on vehicular highways by assuming a one-
dimensional mobility pattern. They derive the performance values by applying a sta-
tionary flow model for the vehicular traffic. A similar one-dimensional highway model
with a non-uniform density distribution was investigated by [64]. For the traffic charac-
terization, fluid flow models with time-nonhomogeneous and time-homogeneous traffic
have been used, as well as a approximative stochastic traffic model.
A limited directed two-dimensional mobility model was investigated by [36]. The model
assumes a spatially homogeneous distribution of the demand and an isotropic mobility
structure. [16] investigates a mobility model with a homogeneous demand distribution
but assumes a non-uniform velocity distribution. The traffic orientation is non-directed
and equally distributed. The application of these traffic source models in real network
planning cases is strongly limited. Some models, like the highway model proposed by
[64], give a deep insight on the impact of the terminal mobility on the cellular system
performance, however they are rather complex to be applied in real network design.
Other models, like the one suggested by [51], due to their simplification assumptions,
can only be applied for the determination of the parameters in an isolated cell.

3.1.2 Traffic intensity

Since the mobile network planning process requires a comprehensive view of the expected
load, a network teletraffic model has to be specified. Therefore, we define the traffic
intensity function E(t)(x, y). This function describes the offered teletraffic, as seen by
the fixed network elements, in a unit area element at location (x, y) and at time instant
t. The coordinates (x, y) of the area element are integer numbers. Due to the definition
given above, the traffic intensity function is a matrix of traffic values representing the
demand from area elements in the service region, cf. Figure 50(b). The traffic intensity
E(t)(x, y) can be derived from the location probability of the mobile units.
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Under the premise that this probability p
(t)
loc(χ, ψ) is known, the average number of mobile

units #mob
(t)

(x, y) in a certain area element at time t is:

#mob
(t)

(x, y) =

∫ x+∆x

x

∫ y+∆y

y

p
(t)
loc(χ, ψ)dχ dψ . (38)

Here, p
(t)
loc(χ, ψ) is the probability that, if the system is viewed from the outside, there is

a mobile unit at location (χ, ψ). The location (χ, ψ) is a coordinate in R
2 and ∆x×∆y

is the size of the unit area element.

Using the assumption that every mobile unit has the same call attempt rate r(t) at time
t, the traffic intensity E(t)(x, y) can be readily obtained:

E(t)(x, y) = #mob
(t)

(x, y) r(t) . (39)

Since in reality it is almost impossible to directly calculate the location probability
p

(t)
loc(χ, ψ) from the mobility model, the traffic intensity has to be derived from indirect

statistical measures.

3.1.3 The geographic network traffic model

The offered traffic in a region can be estimated by the geographical and demographical
characteristics of the service area. Such a demand model relates factors like land use,
population density, vehicular traffic, and income per capita with the calling behavior
of the mobile units. The model applies statistical assumptions on the relation of traffic
and clutter type with the estimation of the demand. In the geographic network traffic
model, the intensity E

(t)
geo(x, y) is the aggregation of the traffic originating from these

various factors:

E(t)
geo(x, y) =

∑
all factors i

ηi · δ(t)
i (x, y), (40)

where ηi is the traffic generated by factor i in an arbitrary area element of unit size,
measured in Erlangs per area unit, and δ

(t)
i (x, y) is the assertion operator:

δ
(t)
i (x, y) =

{
0 : factor i is not valid at location (x, y)
1 : factor i is valid at location (x, y)

. (41)

So far the planning of public communication systems uses geographic traffic models
which have a large granularity. A typical unit area size is in the order of square kilo-
meters, i.e. in public cellular mobile systems this is the size of location areas, cf. [44].
For the determination the positions of base stations a much smaller value is required.
The locations of these facilities have to be determined within a spatial resolution of one
hundred meters. An unit area element size in the order of 100m × 100m is therefore
indicated.
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Traffic parameters The values for ηi, which are the traffic intensity originating from
factor i per area element, can be derived from measurements in an existing mobile
network and by taking advantage of the known causal connection between the traffic
and its origin. A first approach is to assume a highly non-linear relationship. A general
structure to model this behavior is to use a parametric exponential function. In the
geographic model, proposed within this paper, the traffic-factor relationship is defined
to be:

ηi = a · bxi (42)

where a is constant and b is the base of the exponential function. For the validation of
Equation 42, presented in Section 3.3, a value of 10 has been used for the basis b.

To reduce the complexity of the parameter determination we introduce the normalization
constraint:

Etotal

Aservice area/aunit element

=
∑

all factors i

ηi , (43)

where Aservice area is the size of the service area, aunit element is the size of an unit area element,
and Etotal is the total teletraffic in this region. The value of Etotal can be measured in an
operating cellular mobile network.

The structure of the geographical traffic model given in Equation40 and Equation 42
appears to be simple. However, it will be shown in Section 3.4 that this model is accurate
enough to describe the traffic in cells of an operating mobile network. Moreover, due
to its structure the model can easily be adapted to the proper traffic parameters. This
capability enables its application for mobile system planning.

Stationary geographic traffic model The above proposed model E
(t)
geo(x, y) includes

also the temporal variation of the traffic intensity in the service area. Since communica-
tion systems must be configured in such a way that they can accommodate the highest
expected load, the time index t is usually dropped and the traffic models are reduced
to stationary models describing the peak traffic. The maximum load is the value of the
traffic during the busy hour, cf. [95].

A pitfall for the network designer remains: the busy hour varies over time within the
service area. In downtown areas the highest traffic usually occurs during the business
hours, whereas in suburban regions the busy hour is expected to be in the evening.
Therefore, the network engineer has to decide how to weight the different traffic factors,
i.e. how to obey the different market shares of the various user groups in the traffic
model of the network.

3.1.4 Traffic discretization

The core technique of the traffic characterization proposed in this paper is the represen-
tation of the spatial distribution of the demand for teletraffic by discrete points, called
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demand nodes. Demand nodes are widely used in economics for solving facility location
problems, cf. [40].

Definition: A demand node represents the center of an area that contains a quantum
of demand from teletraffic viewpoint, accounted in a fixed number of call requests per
time unit.

The notion of demand nodes introduces a discretization of the demand in both space and
demand. In consequence, the demand nodes are dense in areas of high traffic intensity
and sparse in areas of low traffic intensity. Together with the time-independent geo-
graphic traffic model, the demand node concept constitutes a static population model
for the description of the mobile subscriber distribution.

An illustration for the demand node concept is given in Figure 50: part (a) shows publicly
available map data with land use information for the area around the city of Würzburg,
Germany. The information was extracted from ATKIS, the official topographical carto-
graphical data base of the Bavarian land survey office, cf. [7]. The depicted region has an
extension of 15km × 15km. Figure 50(b) shows the traffic intensity distribution in this
area, characterized by the traffic matrix: dark squares represent an expected high de-
mand for mobile service, bright values correspond to a low teletraffic intensity. Part (d)
of Figure 50 depicts a simplified result of the demand discretization. The demand nodes
are dense in the city center and on highways, whereas they are sparse in rural areas.

3.2 Traffic characterization

3.2.1 Traffic characterization procedure

Based on the estimation method introduced in the previous section, the traffic char-
acterization has to compute the spatial traffic intensity and its discrete demand node
representation from real world data. In order to handle this type of data, the complete
characterization process comprises four sequential steps:

Step 1 Traffic model definition:

Identification of traffic factors and determination of the traffic parameters
in the geographical traffic model.

Step 2 Data preprocessing:

Preprocessing of the information in the geographical and demographical
data base.

Step 3 Traffic estimation:

Calculation of the spatial traffic intensity in the service region.

Step 4 Demand node generation:

Generation of the discrete demand node distribution by the application of
clustering methods.
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(a) Geographical and demographical data (b) Traffic matrix
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Figure 50: Demand node concept
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(a) Unordered lines (b) Adjacent open and closed
polygons

(c) Closing lines

Figure 51: Dirty map information data

Traffic model definition The definition of geographical traffic model in Step 1 of the
characterization procedure is based on the arguments given in Section 3.1.3. A simple
but accurate spatial geographic traffic model is the base for system optimization in the
subsequent network design steps.

Data preprocessing The data preprocessing in Step 2 is required since the data in ge-
ographical information systems are usually not collected with respect to mobile network
planning. For example, ATKIS’ main objective is to maintain map information. It uses
a vector format for storing its drawing objects.

To determine the clutter type of a certain location, one has to identify the land type
of the area surrounding this point. This requires the detection of the closed polygon
describing the shape of this area. Since maps are mostly printed on paper, the order of
drawing the lines of a closed shape doesn’t matter, see Figure 51(a). To identify closed
polygons, one has to check if every ending point of a line is a starting point of another
one. If a closed polygon has been detected, the open lines are removed from the original
base and replaced by its closed representation. Additionally, due to the map nature of
the data, two adjacent area objects can be stored by a closed and an open polygon, see
Figure 51(b). It also can happen that some data is missing, see Figure 51(c). In this
case, line closing algorithms have to applied, cf. [63]. After the preprocessing step only
closed area objects remain in the data base and the traffic characterization can proceed
with the demand estimation.

Demand estimation Step 3 of the traffic characterization process uses the geographical
traffic model defined in Step 1 for the estimation of the teletraffic demand per unit area
element. The computed traffic values are stored in the traffic matrix. To obtain the traf-
fic value on a certain unit area element, the procedure first determines the traffic factors
valid for this element and then computes the matrix entry by applying Equation 40.
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3.2.2 Demand node generation

The generation of the demand nodes in Step 4 of the characterization process is per-
formed by a clustering method. Clustering algorithms are distinguished into two classes,
cf. [53]: a) the Partitional Clustering methods, which try to construct taxonomies be-
tween the properties of the data points, and b) the Hierarchical Clustering methods
which derive the cluster centers by the agglomeration of input values.

The algorithm proposed for the demand generation is a recursive partitional clustering
method. It is based on the idea to divide the service area until the teletraffic of every
tessellation piece is below a threshold θ. Thus, the algorithm constructs a sequence of
bisections of the service region. The demand node location is the center of gravity of
the traffic weight of the tessellation pieces. The demand node generation algorithm is
given in [115].

An example for the bisection sequence of the algorithm is shown in Figure 50(c).
The numbers next to the partitioning lines indicate the recursion depth. To make the
example more vivid, not every partition line is depicted in the example. The upper left
quadrant of the Figure 50(c) shows only the lines until the recursion depth 3, the lower
left part the lines until the depth 4, the lower right quarter the lines until depth 5 and
the upper right quadrant of the region the lines until depth 6.

The partitional clustering algorithm of Algorithm 1 [115] is a fast but simple clustering
method. However, its accuracy depends strongly on the quantization value θ, which gives
only an upper bound for the traffic represented by a single demand node. Moreover,
since the algorithm constructs a sequence of right-angled bisections, the shape of the
tessellation pieces is always rectangular. To overcome these drawbacks, we investigate
also hierarchical agglomerative clustering algorithms. These methods are able to obtain
tessellation pieces of arbitrary shape and of a predefined traffic value.

3.3 Validation of the traffic estimation

To evaluate the capability of the traffic estimation and characterization of Section 3.2,
the traffic approximation of this procedure was compared with the traffic distribution
measured in cells of the GSM-based D1 system of the German network operator DeTeMo-
bil. Figure 52 depicts the approximated cell boundaries of the D1 system superimposed
on the land use of the investigated area around Würzburg.

The traffic estimation of the demand node concept was based on the geographical net-
work model as defined by the Equations 40 and 42. For the validation, the model con-
sidered as the traffic factors the five clutter types which were available for this area in
the ATKIS data base: vehicular traffic, urban, open outdoor, water, and forest. Table 4
shows the values of the exponents used for the calculation of ηi in Equation 42. The
parameter a was calibrated from measurements and constant for every traffic factor i.
The demand node representation of the estimated traffic in this region, generated by
Algorithm 1, is depicted in Figure 53. As expected the demand nodes are dense in the
city center and on highways and are sparse in rural areas.
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Figure 52: Cell boundaries Figure 53: Demand node approximation

The share of the teletraffic of the cells in this area is shown in Figure 54. The solid line
represents the proportion of each of the seven D1 cells of the measured total teletraffic.
The dotted line in Figure 54 is the estimation of the geographic network traffic model.
Both graphs are qualitatively almost the same for the cells with numbers 1, 2, 3, and
4. However, for the cells 5, 6, and 7 the estimation differs strongly from the measured
distribution. The cause for the wrong approximation in these cells is the limited dis-
tinction of the traffic factors. Due to the use of ATKIS, the model does not distinguish
between “urban” and “dense urban”. However, the cells 5, 6, and 7 are located in the
city center of the Würzburg. The high traffic demand due to the high user density in
this area is not reflected in the model.
This example demonstrate that the geographical network traffic has the ability to esti-
mate the traffic quite accurate (cf. cells 1, 2, 3, and 4). However, it has to be extended
in some cases (cf. cells 5, 6, and 7).

clutter type xi = logb(
ηi

a
)

vehicular traffic 3
urban 2
open outdoor 1
water 0
forest -1

Table 4: Parameter of the traffic clutter relationship
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3.4 Demand based mobile network design

To prove the capability of the demand estimation and to show the feasibility of the
integrated design concept, ICEPT - a prototype of a planning tool for cellular mo-
bile networks was implemented at the University of Würzburg, cf. [114]. The tools’
core components are the automatic network design algorithm SCBPA (Set Cover Base
Station Positioning Algorithm) and a traffic characterization procedure as described in
Section 3.2.

The SCBPA algorithm is a greedy heuristic which selects the optimal set of base sta-
tions that maximizes the proportion of covered traffic, i.e. the ration of the demand
nodes which measure a pathloss on the forward/reverse link above the threshold of the
link budget, cf. [113].

SCBPA was tested again on the topography around the city center of Würzburg. The
task was to find the optimal locations of nine transmitters in this terrain. The result of
the algorithm is depicted in Figure 55. The base station locations are marked by a �
symbol. The lines indicate the convex hull around the set of demand nodes which are
supplied by the base station. The SCBPA algorithm was able to obtain a 75% coverage
of the teletraffic of the investigated area. The total computing time for the configuration,
including the traffic characterization, was 4min on a SUN Ultra 1/170.
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Figure 55: ICEPT planning result: base station locations
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3.5 Summary

We presented a new method for the estimation and characterization of the expected
teletraffic in mobile communication networks. The method considers the teletraffic from
the network’s viewpoint. Its traffic estimation is based on the geographic traffic model,
which obeys the geographical and demographical factors for the demand for mobile com-
munication services. For the spatial teletraffic characterization, a novel representation
technique was introduced which uses the notion of discrete demand nodes. We demon-
strated how the information in geographical information systems, like ATKIS, can be
used to estimate the teletraffic demand in a service region and we validated the results
with measurements from a real cellular network. Additionally we outlined how the dis-
crete demand node representation enables the application of automatic mobile network
design algorithms.
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4 Traffic stream descriptors

An important teletraffic research topic is to find traffic descriptors which can support
the accurate analysis of network performance. In this section we address the question
of relevant arrival process characteristics that accurately determine queueing behaviour
and also investigate the generalized peakedness as a measure of traffic burstiness.

4.1 Second order descriptors to characterize MAPs

The motivation for carrying out this work [3] has been the question of what statisti-
cal descriptors of the arrival process suffice to make an accurate prediction of queueing
behaviour possible. This question has become increasingly interesting from a practical
perspective due to the tremendous growth in real-life technical systems with complex
non-renewal arrival processes. The relevance of this question has been particularly ap-
parent in the area of modelling communication systems since findings in modern real
life networks e.g. [37] and [62] have illustrated arrival process behaviour very different
from what has previously been seen in communication networks.

It is well documented in the literature that in general queueing behaviour can NOT be
accurately predicted on the basis of first and second order properties of the counts of the
arrival process. In [2] and [34] it is shown that arrival processes, created by superposing
Interrupted Poisson Processes (IPPs), with fixed first and second order properties of
their counting processes can show drastically different queueing behaviour. Particularly
illustrative is the work in [8] where it shown that even for two state Markov Modulated
Poisson Processes (MMPPs), also known as Switched Poisson Processes (SPPs) [116],
drastically different queueing behaviour can be exhibited for arrival processes with the
same first and second order properties of the counts.

Sriram and Whitt have in [110] proposed to use properties of the interval process
as arrival process descriptors. To provide tools for supplementing this work we in this
paper derive expressions for the second order properties of the process of inter-arrival
times (the interval process) for a Markovian Arrival Process (MAP) [71]. We derive
a general formula for the Index of Dispersion of Intervals (IDI) and give a simplified
formula for the interval covariances. Particular formulas for the special cases of the two
state MAP and the SPP are given. It is shown that the fundamental rate, IDI and
Index of Dispersion of Counts IDC completely characterize the stochastic behaviour of
two state MAPs.

We introduce the notion of similar MAPs i.e. MAPs with parameter matrices which
are similar. We show that several well known stochastical equivalences of two state
MAPs can be expressed by similarity transformations of the MAPs. The valid region
for these similarity transformations of 2 state MAPs are given in an appendix.

Finally we compare queueing behaviour of SPPs with the same rate and IDI to
assess the meaningfullness of predicting queueing behaviour from first and second order
properties of the interval process alone. Also we look further into the queueing behaviour
of SPPs with the same rate and IDC drawing in part upon results from [8].
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4.1.1 The MAP

The MAP [70], [71] and [96] is a Markov renewal process whose transition probability
matrix F(∗) is of the form

F(x) =
∫ x

0
eD0uduD1

where the matrices D0 = [D0ij ] and D1 = [D1ij ] are respectively a stable matrix
and a non-negative matrix whose sum is an irreducible infinitesimal generator D with
stationary probability vector ~π. The fundamental rate of the process is given as λ? =
~πD1~e where ~e is a column vector of 1s. The interval-stationary probability vector ~φ is
found as the stationary probability vector of F(∞) = (−D0)

−1D1. It can readily be

shown that ~φ = (λ?)−1~πD1.
The MAP descriptors we are interested in here are the first and second order prop-

erties of the counting and the interval process. By the interval process we mean the
process of succesive inter-arrival times. Throughout the text N(t) will denote the
counting process up to time t. By N e(t) we denote the equilibrium or time stationary
version, while N◦(t) denotes the interval stationary version.

We will make use of a number of double transforms in the following

ψe(t) =

∫ ∞

0

e−stE
(
ZNe(t)

)
dt = ~π (sI − D0 − zD1)

−1 ~e

ψ◦(t) =

∫ ∞

0

e−stE
(
ZN◦(t)

)
dt = (λ?)−1~πD1 (sI − D0 − zD1)

−1 ~e

Interval process results The interval process has not yet gained as much interest as
the counting process when characterizing MAPs. We will demonstrate that there is a
great potential in the interval process with respect to obtaining further insight in the
behaviour of point processes. Especially when considering two state MAPs joint second
order properties of counts and intervals determine the representation up to stochastical
equivalence of the point process.

The IDI for a MAP Let Xn be a stationary sequence of inter-arrival times and let

Sn =
∑n

i=1Xi. The IDI is defined as IDI(k) = (λ?)2

k
V ar{Sk} i.e. as the ratio of the

variance of Sn to the corresponding variance in case of a Poisson process [19] p. 71. It
should be noted that while the interval stationary process in the context of IDI appears
to be the most natural to consider other processes as the time stationary process might
be meaningfull to consider. In the latter cases X1 should be chosen meaningfully e.g.
for the time stationary process X1 should be the time from a random point to the next
arrival and hence not an “inter-arrival” time.
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Theorem 4.1 The IDI for an interval stationary MAP - (D0,D1) is

IDI(n) = 2λ?~π(I + D−1
0 D1 + Φ)−1(−D0)

−1~e− 1

− 2
n
λ?~π(I − (−D−1

0 D1)
n)(I + D−1

0 D1 + Φ)−2(−D−1
0 D1)(−D0)

−1~e

with

Φ = ~e~φ

The proof of this theorem is given in [3].
Recall IDC(t)

IDC(t) = 1 − 2λ? +
2

λ?
~πD1(Π− D)−1D1~e− 2

λ?t
~πD1(I − eDt)(Π − D)−2D1~e

where Π = ~e~π.
The fact that the asymptotic value of the IDI and the IDC are the same for a MAP

(see e.g. [20] pp. 361 - 362) gives that the following equality must hold :

2λ?~π(I + D−1
0 D1 + Φ)−1(−D0)

−1~e− 2 =

2
λ?~πD1(Π− D)−1D1~e− 2λ?

The two expressions in this interesting equality do not appear to be straightforward
to derive from each other.

We have not been able to exploit this fact yet, altough there is a slight chance that
some deeper insight could be gained. Most likely, however, the expressions can be derived
from each other due to standard matrix analytic arguments.

Covariance function The covariance of intervals in the interval stationary version of
the process can then be found as (following [35] p.153 with further simplifications fol-
lowing the lines in the derivation of the IDI).

Cov{X1, Xk} = (λ?)−1~π(((−D−1
0 )D1)

k−1 − Φ)(−D0)
−1~e

= (λ?)−1~π((−D−1
0 )D1)

k−1(−D0)
−1~e− (λ?)−2 (44)

Results for the special case of a two state MAP The two state MAP is a 6 parameter
model.

D0 =

[ −(r1 + λ11 + λ12) r1
r2 −(r2 + λ21 + λ22)

]
D1 =

[
λ11 λ12

λ21 λ22

]
(45)

with steady state probability vector ~π = ( r2+λ21

r1+r2+λ12+λ21
, r1+λ12

r1+r2+λ12+λ21
) and fundamen-

tal rate λ∗ = ~πD1~e = (λ11+λ12)(r2+λ21)+(λ21+λ22)(r1+λ12)
r1+r2+λ21+λ12

.
In the following we use the notation tr(Q) and det(Q) for respectively the trace and

the determinant of the matrix Q.
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Counting process results for the time stationary process The time stationary variance-
time curve can be found as (following [69] p. 501 and with further simplifications).

V (t) = (λ? − 2δ−1(λ?2 − ~πD1
2~e))t+ 2δ−2(1 − eδt)(λ?2 − ~πD1

2~e) (46)

where δ = −tr(D).

Interval process results for the interval stationary process The covariance between
inter-arrival times seperated by k − 1 intervals can be found as

Cov(k) =
(~πD1

2~e− λ?2)

λ?2(λ?δ + det(D1))

(
det(D1)

λ?δ + det(D1)

)k

(47)

where again δ = −tr(D).
The index of dispersion of intervals can be found as :

IDI(k) = 1 − 2 (λ?2−~πD1
2~e)

λ?δ
(1 − det(D1)

kλ?δ
(1 − ( det(D1)

λ?δ+det(D1)
)k)) (48)

During the straight forward but rather tedious derivations of the 2 state MAP results
for the process of inter-arrival times it might be convenient to diagonalize the stochastic
matrix (−D0)

−1D1 as done e.g. in [3].

Remark:
The term λ?δ + det(D1) = det(D0) so that the geometric term in e.g. Cov(k) =

ccov(
det(D1)
det(D0)

)k is the ratio det(D1) to det(D0).
It is evident that the first and second order properties of the counting process and

the process of interarrival times can be maintained by fixing the 4 quantities: λ?,
δ = −tr(D), ~πD1

2~e and det(D1), in a 2 state MAP. Fixing only the quantities λ?,
δ = −tr(D) and ~πD1

2~e ensures that the first and second order properties of the time

stationary counting process are maintained while fixing the quantities λ?, (λ?)2−~πD1
2~e

δ

and det(D1)
δ

ensures that the first and second order properties of the interval stationary
process are maintained.

4.1.2 Stochastic equivalence

The notion of stochastical equivalence (SE) is an important one when considering point
processes generated by different MAPs. Two different MAPs will in general not be
identical in any reasonable probabilistic sense when considering an arbitrary initial state.
However, for certain combinations of initial conditions the point processes of several
MAPs might very well have identical probabilistic behaviour. It appears to be most
relevant to consider the time and interval stationary behaviour. The equivalence of the
Interrupted Poisson Process (IPP) and the renewal process with an inter-arrival time
distribution according to a 2 phased hyper-exponential, H2, is the classical example of
this construction. We give an important definition following the lines of [69].
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Definition 4.1 Two point processes are stochastically equivalent (SE) if for any n ≥ 1
the joint distribution of the first n intervals agree.

The joint Laplace-Stieltjes transform of the first n intervals in the interval stationary
version of the process is given as

Ψi(s1, · · ·, sn) = (λ?)−1~πD1(s1I − D0)
−1D1 · · · (snI − D0)

−1D1~e

Following the approach in [69] p.507 this expression can, for sufficiently large si, be
expanded as

Ψi(s1, · · ·, sn) = (s1 · · · sn)−1(λ?)−1
∞∑

k1=0

· · ·
∞∑

kn=0

~πD1(D0)
k1D1 · · · (D0)

knD1~es
−k1
1 · · · s−kn

n

For two MAPs parameterized by (Dx
0 ,D

x
1) and (Dy

0,D
y
1) to be stochastically equivalent

by analyticity of the transforms we must have that

~πxDx
1(D

x
0)

k1Dx
1 · · · (Dx

0)
knDx

1~e = ~πyDy
1(D

y
0)

k1Dy
1 · · · (Dy

0)
knDy

1~e

for all n ≥ 0 and for all k1 ≥ 0, · · ·, kn ≥ 0
Here the requirements for stochastical equivalence have been established for the in-

terval stationary version of the point processes. Recalling that ~πD1 = −~πD0 it is easily
verified that the interval stationary version of the point processes of two MAPs are
stochastically equivalent if and only if the time stationary version of the point processes
are stochastically equivalent.

Theorem 4.2 Two two-state MAPs have the same rate, IDI and IDC if and only if
their point processes are stochastically equivalent.

The proof of this theorem is presented in [3].

Definition 4.2 Two MAPs with parameter matrices (D0,D1) and (S0,S1) are similar
if there exists a similarity transformation such that S0 = PD0P

−1 and S1 = PD1P
−1,

where P~e = ~e.

Theorem 4.3 Two similar MAPs have stochastically equivalent interval stationary pro-
cesses.

Proof: Consider the two similar MAPs (D0,D1) and (S0,S1) with the similar-
ity transformation matrix P . The invariant probability vector for the time-stationary
process ~πS is given by ~πDP−1, correspondingly for the interval stationary version ~φS =
~φDP−1. By insertion, see definition 3.1, the requirements for stochastical equivalence
are readily seen to be fulfilled.

2
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We now give some examples of stochastically equivalent point processes derived from
similar two state MAPs. In [3] we give the valid region for similarity transformations of
a given two state MAP. In the examples we draw upon the results derived in [3].

Example 4.1 The stochastical equivalence of the IPP and the H2 renewal process is
well known. In a MAP context we can express this by the similarity of the two MAPs

D0 =

[ −µ1 0
0 −µ2

]
, D1 =

[
µ1p µ1(1 − p)
µ2p µ2(1 − p)

]
,

S0 =

[
− (pµ2

1+(1−p)µ2
2)

µ1p+µ2(1−p)
p(1−p)(µ1−µ2)2

µ1p+µ2(1−p)
µ1µ2

µ1p+µ2(1−p)
− µ1µ2

µ1p+µ2(1−p)

]
, S1 =

[
µ1p+ µ2(1 − p) 0

0 0

]
,

which are related through Di = P−1SiP , i = 0, 1 with

P =

[
p 1 − p

−µ2

µ1−µ2

µ1

µ1−µ2

]
, P−1 =

[
µ1

µ1p+µ2(1−p)
(µ2−µ1)(1−p)
µ1p+µ2(1−p)

µ2

µ1p+µ2(1−p)
−(µ2−µ1)p

µ1p+µ2(1−p)

]

Another similarity transformation transforms the H2 renewal process into a mixture of
Generalized Erlang (GE)-distributions. The MAP (T 0,T 1)

T 0 =

[ −µ1 (µ1 − µ2)(1 − p)
0 −µ2

]
, T 1 =

[
µ1p+ µ2(1 − p) 0

µ2 0

]
,

is related with (D0,D1) through Di = Q−1T iQ, i = 0, 1 with

Q =

[
p 1 − p
0 1

]
, Q−1 =

[
1
p

−(1−p)
p

0 1

]

Example 4.2 In [69] it was shown that for all 2 state MMPPs (or SPPs) point processes
there exists a stochastically equivalent Markov Switched Poisson Process (MSPP) point
process. The MSPP can be parameterized as follows

D0 =

[ −µ1 0
0 −µ2

]
, D1 =

[
µ1p1 µ1(1 − p1)
µ2p2 µ2(1 − p2)

]
,

Also here the stochastical equivalence can be expressed as a similarity transformation.
Let the SPP be parameterized as follows

S0 =

[ −r1 − λ1 r1
r2 −r2 − λ2

]
, S1 =

[
λ1 0
0 λ2

]
,

where

λ1 =
p1µ1 + (1 − p2)µ2 +

√
(p1µ1 − (1 − p2)µ2)2 + 4µ1µ2(1 − p1)p2

2
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λ2 =
p1µ1 + (1 − p2)µ2 −

√
(p1µ1 − (1 − p2)µ2)2 + 4µ1µ2(1 − p1)p2

2

r1 =
((1 − p1)µ1 + p2µ2)λ1 − ((1 − p1) + p2)µ1µ2

λ1 − λ2

r2 =
((1 − p1) + p2)µ1µ2 − ((1 − p1)µ1 + p2µ2)λ2

λ1 − λ2

Then Di = Q−1SiQ, i = 0, 1 with

Q =

[
q1 1 − q1
q2 1 − q2

]
, Q−1 =

1

q1 − q2

[
1 − q2 −(1 − q1)
−q2 q1

]

where

q1 =
(1 + p2)µ2 − p1µ1 +

√
(p1µ1 − (1 − p2)µ2)2 + 4µ1µ2(1 − p1)p2

2(µ2 − µ1)

q2 =
(1 + p2)µ2 − p1µ1 −

√
(p1µ1 − (1 − p2)µ2)2 + 4µ1µ2(1 − p1)p2

2(µ2 − µ1)

Remarks:

• As noted in [69] a stochastically equivalent MSPP point process for a given SPP
point process can always be found while the converse is true only when the MSPP
satisfies : p1(1 − p2) ≥ (1 − p1)p2.

• With the parameterization used in this example it is clear that the stochastical
equivalence of MSPP and SPP point processes can be seen as a generalization of
the stochastical equivalence between the IPP and H2 renewal process in the previous
example. This special case is clearly obtained by setting p1 = p2 = p.

Similarity is somewhat attractive since it is relatively easy to check whether two
matrices are similar or not. On the other hand it is clear that similarity in general is not a
necessary condition for stochastical equivalence of the interval stationary point processes
induced by MAPs. The following example demonstrates the somewhat surprising result
that even within the class of two state MAPs similarity is not a necessary condition in
general.

Example 4.3 If we consider the following two MAPs with stochastically equivalent sta-
tionary point processes

D0 =

[ −26.001600 2.159218
0.919591 −16.998400

]
, D1 =

[
16.001600 7.840782
4.080409 11.998400

]
,
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D =

[ −10.000000 10.000000
5.000000 −5.000000

]

S0 =

[ −26.000000 2.000000
1.000000 −17.000000

]
, S1 =

[
16.000000 8.000000
4.000000 12.000000

]
,

S =

[ −10.000000 10.000000
5.000000 −5.000000

]

It is easily verified that the two MAPs are not similar. We get

S = QDQ−1, S0 = Q0D0Q
−1
0 , S1 = Q1D1Q

−1
1

with

Q =

[
1.000000 0.000000
0.000000 1.000000

]
, Q0 =

[
0.000000 0.222183
0.102158 1.000000

]
,

Q1 =

[
0.000000 −1.999200
−1.019694 1.000000

]

4.1.3 What do the IDI respectively the IDC tell us about queueing behaviour?

Sriram and Whitt [110] have suggested that the IDI might be a better overall charac-
terization of a point process than the IDC with respect to queueing behaviour. Partly
due to the lack of easily implementable formulae this track has not been extensively
pursued. With the derivation of the IDI for the MAP we are able to perform some
introductory steps in this direction. We have choosen the SPP (the special case of a two
state MMPP) as one of the simplest non-renewal processes.

SPP results In this subsection we specialize general MAP results to the SPP. In MAP
notation a SPP can be written as follows

D0 =

[ −(r1 + λ1) r1
r2 −(r2 + λ2)

]
D1 =

[
λ1 0
0 λ2

]
(49)

SPP results for the counting process The time-stationary covariance between the
number of events in two timeslots of size ∆t with k − 1 timeslots between them is
expressed by (k > 0).

γ(k) = (λ1−λ2)2r1r2e−((r1+r2)(k−1)∆t)

(r1+r2)4
(1 − 2e−((r1+r2)∆t) + e−((r1+r2)2∆t)) (50)

The time-stationary variance time curve is given by (see e.g. [49])

σ2(t) = (λ1r2+λ2r1

r1+r2
+ 2 r1r2(λ1−λ2)2

(r1+r2)3
)t− 2 r1r2(λ1−λ2)2

(r1+r2)4
(1 − e−t(r1+r2)) (51)
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SPP results for the interval process The results for the interval process are readily
obtained from the two state MAP results in section 4.1.1.

The covariance of the SPP interval process Xn can in the interval-stationary version
be found as

Cov{X1, Xk} = r1r2(λ1−λ2)2

(λ1λ2+λ1r2+λ2r1)(r1λ2+r2λ1)2
( λ1λ2

λ1λ2+r1λ2+r2λ1
)k−1 , k > 1 (52)

The IDI for an SPP can be found as :

IDI(k) = 1 + 2 r1r2(λ1−λ2)2

(r1λ2+r2λ1)(r1+r2)2
(1 − λ1λ2

k(λ1r2+λ2r1)
(1 − ( λ1λ2

λ1λ2+r1λ2+r2λ1
)k)) (53)

Simple queueing experiments fixing the IDI respectively the IDC

Experiments with SPPs with fixed rate and IDC With four parameters available it
is possible to find a continuum of SPPs with same rate and IDC. This has been done
by Berger [8]. Following his approach it can be seen from formula (51) that fixing λ?,

k1 = r1r2(λ1−λ2)2

r1+r2
and k2 = r1 + r2 a continuum of SPPs can be created by varying the

ratio rrat = r1

r2
. It can be derived [8] that for a given ratio, λ1 and λ2 can be determined

as follows.

λ1 = λ? +

√
k1rrat

k2
, λ2 = λ? −

√
k1

k2rrat
(54)

Starting with an IPP with λ? = 0.3 parameterized as r1 = 0.00074142, r2 =
0.001779411 and λ1 = 0.42499978257 (λ2 = 0) (same as in [8]) a continuum can be
constructed. Here we consider ratios rrat= 1,10,20,50,100,1000,10000, 100000. Here and
in the remaining part of this paper we examine the tail probabilities in a single server
queue with constant service time when assessing queueing behaviour. All queueing ex-
periments are done with load ρ = 0.3.

For a general description of algorithms for calculating performance measures in the
MAP/G/1 queue see e.g. [70] or [96].

Examining the tail probabilities arising with the different SPP arrival processes,
figure 56, it is evident that trying to predict queueing behaviour on the basis of the rate
and IDC is impossible.

Looking at formulae (54) it is clear that for every non-trivial SPP (λ1 6= λ2), λ1

can be made arbitrarily large for a model with same rate and IDC which makes it
certain that queueing behaviour which conditionally overloads the queue always can be
constructed since the intensity out of state 1 is bounded by k2 = r1 + r2. However,
it is also evident that the other intensity parameter λ2 → λ? as rrat → ∞ and that
the relative portion of the traffic that arrives in state 2 tends to 1 i.e. λ1r2

λ2r1
→ 0 as

rrat → ∞. These observations agree well with the queueing results in figure 56. As
rrat → ∞ the slope of the tail becomes arbitrarily close to 0, however, simultaneously the
asymptotic constant becomes smaller. It is thus certain that adverse queueing behaviour
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can be created, depending on the parameters it might, however, only affect such a small
portion of the total traffic that it can be neglected e.g. an asymptotic constant below
e.g. 10−9 when the slope is close to 0.

In figures 57 and 58 we display the IDI respectively the correlations in the interval
process for the different models with same rate and IDC. Somewhat surprising perhaps
it can be seen from figure 57 that it is NOT necessarily the model which reaches the
asymptotic IDI value first which displays the worst queueing behaviour. From figure 58
it is evident that it is not only the magnitude of the correlations that are of significance
but also the number of intervals over which they persist. In [110] and references therein
it has been suggested to approximate non-renewal processes with a renewal process using
a squared coefficient of variation found as a weighted sum of the IDI. From the results
presented here it is evident that one should be very careful when employing such an
approximation.

Experiments with SPPs with fixed rate and IDI Given the analytic expression for
the IDI, formula (53), we look at different SPPs with fixed rate and IDI.

From formula (53) it can be seen that fixing λ?, k1 = r1r2(λ1−λ2)2

(r1+r2)3
and k2 = λ1λ2

r1+r2
a

continuum of SPPs can be created by varying the ratio rrat = r1

r2
.

λ1 = λ? 1+rrat

1+arrat

λ2 = aλ? 1+rrat

1+arrat

r1 = arrat(λ?)2(1+rrat)
k2(1+arrat)2

(55)

r2 = a(λ?)2(1+rrat)
k2(1+arrat)2

where

a = 1 + k1(1+rrat)2

2k2rrat
−
√

(k1(1+rrat)2

2k2rrat
)2 + k1(1+rrat)2

k2rrat

For comparison we choose the same rate and asymptote as above i.e. λ? = 0.3
and k1

λ∗ = 99.2. Additionally we arbitrarily choose k2 = 1.2. As in the previous case
a continuum of SPPs can now readily be constructed. Here we consider ratios rrat=
1,2,5,10,100,1000,10000, 100000.

From figure 59 it is evident that it also very difficult to predict queueing behaviour
solely on the basis of the rate and IDI. However, as rrat → ∞ there seems to be
convergence towards a worst case queueing behaviour which is unlike the case with fixed
rate and IDC. Looking at figure 60 it is evident that the worst queueing behaviour is
experienced for models which reach the asymptotic IDC value first. Looking at figure
61 it can be noted that for the counting process apparently short range correlation of
large magnitude can be worse than long range correlations of low magnitude. This
seems to be in contrast with claims that long range correlation of low magnitude are
dominant with respect to queueing behaviour. From the formulae (55) it is possible to
find theoretical support for these observations. Using a Taylor expansion and letting
rrat → ∞ the following limit results can readily be found.
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λ2 → λ?k2

k2 + k1
as rrat → ∞

r2 → (λ?)2k1

(k2 + k1)2
as rrat → ∞ (56)

λ1

r1
→ k1 + k2

λ?
as rrat → ∞

Additionally λ1 → ∞ as rrat → ∞ because a→ 0 as rrat → ∞. It is well known that
for a SPP the number of arrivals during the sojourn time in a given state is geometrically
distributed. For state i the probability of j arrivals, pi(j), is given by pi(j) = ri

ri+λi
( λi

ri+λi
)j

where ri denotes the departure intensity from state i and λi the arrival intensity. Recall-
ing the third limit result in formulas (56) it is clear that the number of arrivals during
a sojourn time in state 1 tends to a fixed distribution as rrat → ∞ i.e. the following
p1(j) = λ?

λ?+k1+k2
( k1+k2

λ?+k1+k2
)j .

Since r1 → ∞ as rrat → ∞ it is evident that the total arrival process tends to a
batch Poisson arrival process with batch arrival intensity λB = λ? k2+λ?

k2+k1+λ? and batch
size distribution

p(1) = (1 − q) + q λ?

λ?+k1+k2

p(j) = q λ?

λ?+k1+k2
( k1+k2

λ?+k1+k2
)j−1 for j ≥ 2

where q = λ?k1

(k2+k1)(k2+λ?)
. Clearly the z transform of the batch size distribution P (z) can

be written as

P (z) = (1 − q)z + q
λ?z

λ? + (k1 + k2)(1 − z)
(57)

Approximating the tail of the queue seen by arrivals with the asymptotic tail yields
P{Qa > j} ≈ ασj. For a batch Poisson arrival process it is relatively easy to investigate
the asymptotic tail behaviour of the queue using e.g. the results from [1]. First the
asymptotic decay rate σ is determined from the following equation ([1] p. 119).

λB(1 − P (σ−1)) = η and φ(η) = σ−1 (58)

where φ(η) = E{eηV } is the generating function for the service time distribution and η
denotes the to σ corresponding exponential tail of the waiting time distribution (0 < σ <
1) and (0 < η <∞). Without loss of generality we assume that the arrival process and
service time distribution are scaled so that the mean service time is 1. The asymptotic
constant α is then readily determined from :

α =
(1 − ρ)λB(1 − P (0))

ρ(λBP ′(σ−1)φ′(η) − 1)
(59)

where ρ denotes the load.
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Remark:
We have here used the covariance of the number of arrivals in a slot of some size ∆t
formula (52). Due to the arbitrary size of the slot ∆t it is not without problems to
interpret this descriptor. It turns out that the curves in figure 61 are quite sensitive to
the choice of ∆t. From a theoretical perspective it would thus be more obvious to focus
on the correlation of the rates. In applications, however, it is straightforward to estimate
the correlation function of counts while estimation of the rate is a delicate topic.

4.2 Peakedness characterization

In this section we focus on peakedness as one of the most promising candidate measures
of traffic burstiness [87, 88].

The simplest burstiness measures take only the first-order properties of the traffic
into account. A set of candidates are the moments of the inter-arrival time distribution.
In practice the peak to mean ratio and the squared coefficient of variation are the most
frequently used first-order measures [98, 86].

Measures expressing second-order properties of the traffic are more complex. The au-
tocorrelation function, the indices of dispersion [110, 47] and the generalized peakedness
[26, 27] are the most well known measures from this class.

Moreover, there are a number of burstiness measures based on different concepts, e.g.
we can use burst length measures [98, 111] or parameters of a leaky bucket for burstiness
characterization [85]. By the concept of self-similarity the Hurst parameter and other
fractal parameters are also candidates for burstiness measures [89, 62].

In this section we review the theory of generalized peakedness and further develop the
basic concept by introducing the generalized peakedness in discrete time. The advantage
of this approach is that it allows us to apply the general framework of peakedness for
traffic engineering. We provide the computation of peakedness for a number of important
discrete time models including the Markov modulated batch Bernoulli process and the
batch renewal process. The relationship between IDC and peakedness is also presented.
We discuss the challenges of measuring peakedness in practice. Moreover, we show a
technique how Markov modulated traffic models can be fitted to a measured peakedness
curve. Finally, the practical applicability of peakedness and our modeling technique
are demonstrated by examples based on measured MPEG video, aggregated ATM and
Ethernet traffic.

4.2.1 Peakedness measures

Peakedness of a traffic stream has been found a useful characterization tool in blocking
approximations and in trunking theory [48]. It has been defined as the variance to
mean ratio of the number of busy servers in an infinite hypothetical group of servers to
which the traffic is offered, where the service times of the servers are independent and
exponentially distributed with a common parameter.
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Generalized peakedness Eckberg [26] extended this definition by allowing arbitrary
service time distribution and defined generalized peakedness as a functional which maps
holding time distributions into peakedness values. For a given complementary hold-
ing time distribution F c(x) = P {holding time > x}, Eckberg defines the peakedness
functional z{F c} as the variance to mean ratio of the number of busy servers in a hypo-
thetical infinite group of servers with independent holding times distributed according
to F c. The general definition provides a way to characterize the variability of an arrival
stream with respect to a given service system.

Let us have a stationary arrival process S in continuous time with counting function
N(t) = the number of arrivals in (0, t] for t ≥ 0. The mean arrival intensity is denoted
by m = E {N(t)} /t, which is independent of t due to the stationarity of S.

Arrivals are allowed to come in batches of random size B. We define the batchiness
parameter as b = E {B2} /E {B} which can be shown to be the mean size of a batch
that an arbitrary arrival finds itself in. The differential process [19] ∆N(t) is defined
for a fixed ∆t as the number of arrivals in (t, t + ∆t], that is, N(t + ∆t) − N(t). We
define the covariance density of the arrival process k(s) for s > 0 as the covariance of

the differential process as ∆t goes to zero: k(s) = lim∆t→0
Cov{∆N(t),∆N(t+s)}

(∆t)2
which is

independent of t due to the stationarity of S. For s < 0 we let k(s) = k(−s).
We offer the arrival process S to an infinite server group where the service times are

independent and have a complementary holding time distribution of F c(x) (x ≥ 0; for
x < 0, we define F c(x) = 0), mean holding time of 1/µ =

∫∞
−∞ F c(x)dx where µ is the

service rate, and finally the autocorrelation of F c is ρF c(x) =
∫∞
−∞ F c(s)F c(s+ x)ds.

Denoting the number of busy servers at time t by L(t), the generalized peakedness
functional is defined as

z{F c} =
VarL(t)

E {L(t)} . (60)

If the arrival stream is defined for the whole time axis (−∞,∞), it is independent of t
due to the stationarity of S. In practice, we never have an arrival process for an infinitely
long time; in this case, we have to define the peakedness for a t which is large enough
for the initial transient period in the service system to be negligible. (More precisely,
z{F c} = limt→∞ VarL(t)/E {L(t)}.)

With the notation introduced above, the peakedness of the arrival stream can be
expressed in terms of the covariance density function as [26]

z{F c} = 1 +
µ

m

∫ ∞

−∞
(k(s) −mδ(s))ρF c(s)ds (61)

where δ(s) is the Dirac delta function.
The important case of exponential service time simplifies to

zexp(µ) =
b+ 1

2
+

1

m
k∗(µ) (62)
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where k∗(µ) =
∫∞
0+
k(s)e−µsds, the Laplace transform of the covariance density function.

Here we have the peakedness of a given arrival stream as a function of the service rate
µ.

It is shown [26] (and is suggested by (62)) that the peakedness function zexp(µ)
together with m determines k(s) and therefore the pair (zexp(µ), m) is a complete second
order characterization of the arrival process.

The peakedness function zexp(µ) can be used to compute the peakedness functional
for a large class of holding time distributions as shown in [26]. The method is elaborated
in [84] to give the peakedness functional for Coxian holding time distributions. The
importance of Coxian holding times lies in the fact that any holding time distribution
can be approximated with arbitrary accuracy by Coxian distributions. Eckberg also
investigated the application of generalized peakedness in delay systems [27]. Eckberg’s
definition of generalized peakedness for point processes has been extended in [80, 81] to
allow fluid flow models given by a rate function.

Peakedness in discrete time In order to use the peakedness measures in a B-ISDN
framework, we now extend the peakedness concept for discrete time arrival streams.

We use the following notation: w[i] is the number of arrivals at epoch i, where
i = . . .−1, 0, 1, . . . . We assume the stationarity of w[i]. The first and second moments of
w[t] (independent of t) are denoted by m1 and m2. The covariance density of continuous
time is replaced here by the autocovariance function k[s] = Cov {w[i], w[i+ s]} = k[−s].
(It is seen that k[0] = m2 −m2

1.)
The service time random variable T is also discrete and has the distribution t[1], t[2], . . .

on positive integers. (It cannot take on zero value.) µ = 1/E {T} is again the ser-
vice rate, and it is easily shown that 1/µ = E {T} =

∑∞
s=−∞ F c[s] where F c[x] is the

complementary holding time distribution function: F c[x] =
∑∞

u=x+1 t[u] = P {T > x}
if x ≥ 0 and F c[x] = 0 if x < 0. The autocorrelation function is now ρF c [x] =∑∞

s=−∞ F c[s]F c[s+ x]. It is seen that ρF c [0] =
∑∞

s=−∞(F c)2[s].
The traffic is offered to an infinite group of servers with independent identically

distributed service times determined by F c[x]. Each arrival takes a separate server. The
peakedness of the arrival stream is defined as the variance to mean ratio of the number
of busy servers in the infinite server group:

z{F c} =
VarL[t]

E {L[t]} (63)

where L[t] is the number of busy servers at time epoch t.
An important modification of the definition is to let the service time depend on the

arrival epoch only (have a common service time for all w[t] arrivals at epoch t). We
call (in accordance with [81]) the peakedness value defined in this way the modified
peakedness z̃{F c}. As we have shown [83],

z̃{F c} − z{F c} =

(
m2

m1

− 1

)
(1 − ρF c [0]µ). (64)
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that is, their difference is constant (cf. (35) in [81]). The first factor in the difference is
zero if and only if the arrival stream has no simultaneous arrivals, the second factor is
zero if and only if the holding time distribution is deterministic.

The importance of this modified definition lies in the fact that it gives a way to
handle a whole batch of arrivals together, which can save a lot of computational effort in
the case of measuring the peakedness for a general holding time distribution. However,
in the case of geometric service times, the original definition of peakedness is easier to
measure as shown in section 4.2.2. We will use the original definition of peakedness
(Equation (63)) below.

We can express peakedness in terms of the autocovariance function k[s] similarly to
(61) as

z{F c} = 1 +
µ

m1

∞∑
s=−∞

ρF c [s](k[s] −m1δ[s]). (65)

The most important case in discrete time is the case of geometrically distributed
holding times: t[i] = µ(1 − µ)i−1, 0 < µ < 1 (with E {T} = 1/µ which justifies the
notation).

In order to simplify the formulas, let us introduce the notation

K[s] =

{ 2
m1
k[s] if s > 0

1
m1
k[0] if s = 0

and let its z-transform be K∗(ω) =
∑∞

s=0K[s]ωs.
The peakedness function of the arrival stream with respect to geometric holding time

distribution, as we derived in [83], is given by

zgeo(µ) = 1 +
K∗(1 − µ) − 1

2 − µ
(66)

Peakedness and IDC The widely used measure to characterize the variability of an
arrival stream on different time scales is the index of dispersion for counts (IDC). It is

defined as I[t] = V [t]
E[t]

= V [t]
m1t

where E[t] and V [t] are the mean and variance of the number

of arrivals in t consecutive epochs (t = 1, 2, . . . ).
The connection of IDC and peakedness for geometric holding times is, as we have

shown [83]

zgeo(µ) = 1 +
µ2 d

dω
I∗(ω)|ω=1−µ − 1

2 − µ
(67)

where I∗(ω) is the z-transform of I[t].
We can use (67) to get asymptotic results which connect them [83]:

zgeo(0) =
lims→∞ I[s] + 1

2
, zgeo(1) = I[1] =

Varw[i]

E {w[i]} (68)

where the first equation is derived using the L’Hospital rule and the final value theorem,
whereas the second equation is derived by the initial value theorem for d

dω
I∗.
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Peakedness of traffic models Next, we present the peakedness results for important
traffic models. We consider discrete time models for the number of arrivals in consecutive
epochs.

Batch Bernoulli process A very simple type of arrival stream model is the model
with the number of arrivals in a time epoch be independent identically and generally
distributed with mean m1 and second moment m2.

In this case, k[i] = 0 for all i > 0. Thus, K∗(1 − µ) = K[0] = Var w[i]
E{w[i]} and zgeo(µ) =

1 +
Var w[i]
E{w[i]}−1

2−µ
For the special case of Poisson batch arrivals, the distribution of arrivals in

an epoch is Poissonian, thus Var w[i]
E{w[i]} = 1 which gives zgeo(µ) = 1.

The Poisson process can be considered as a reference process with respect to peaked-
ness characterization. Batch arrival processes that are more bursty than the Poisson
process have higher peakedness values, smoother processes have lower peakedness. (In
the case of deterministic traffic, zgeo(µ) = 1 − 1

2−µ
.)

Markov modulated batch Bernoulli process A very general Markovian process is the
Markov modulated batch Bernoulli process (MMBBP). In this model, we have a discrete
time Markov process as a modulating process. In each state of the modulating Markov-
process, batch arrivals are generated according to a general distribution corresponding
to the state.

Let P and D denote the transition probability matrix and the steady-state distri-
bution vector of the modulating Markov process, respectively (DP=D). Let M1 and
M2 be diagonal matrices corresponding to the first and second moments of the number
of arrivals in the corresponding states. Let e be a vector of all ones and let I be the
identity matrix.

We can express the mean number of arrivals as m1 = DM1e and the second moment
as m2 = DM2e. The autocovariance function of the arrival process is given by k(i) =
DM1P

iM1e −m2
1.

Using (66) we have derived the peakedness function as [83]

zgeo(µ) = 1 +
1

2 − µ

(
2(1 − µ)DM1P(I − (1 − µ)P)−1M1e + m2

m1
− 1
)
− m1

µ
(69)

A very important case of MMBBP is the Markov modulated Bernoulli process
(MMBP); its peakedness curve is the special case of (69).

Markov modulated Bernoulli process As a special case of MMBBP, when the arrival
process is Bernoulli in each state, we have a Markov modulated Bernoulli process. If the
parameter of the Bernoulli process is pi in state i, we have M1 = diag [(] p1, p2, . . . ...)
and M2 = M1.

The peakedness curve for geometrical holding times in this case is

zgeo(µ) = 1 + 2
(1 − µ)DM1P(I − (1 − µ)P)−1M1e

(2 − µ)m1

− m1

µ
(70)
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Switched batch Bernoulli process Another important special case of MMBBP is the
2-state MMBBP (SBBP, switched batch Bernoulli process). Let us use the following

notation: the transition matrix is P =

[
1 − α1 α1

α2 1 − α2

]
and the steady state distri-

bution is thus D = 1
α1+α2

(α2 α1).
Denote γ = 1 − α1 − α2. In state 1, the first and second moments of the number of

arrivals are m1,(1) and m1,(2), respectively; in state 2, the moments are m2,(1) and m2,(2).
The first and second moments of the number of arrivals are given bym1 = 1

α1+α2
(α2m1,(1)+

α1m2,(1)), m2 = 1
α1+α2

(α2m1,(2) + α1m2,(2)). Let us also introduce the notation m∗ =
1

α1+α2
(α2m

2
1,(1) +α1m

2
2,(1)). Note that if the distribution of the batch size in a given state

is deterministic, or if it is geometric or Bernoulli, we have m2
i,(1) = mi,(2) (i = 1, 2) and

thus m∗ = m2. If the batch distribution is Poisson, we have m∗ +m1 = m2.
Using (69) and the possibility to explicitly compute the inverse of I − (1 − µ)P in

the 2-state case, we get

zgeo(µ) = 1 +
1

2 − µ

(
2

m1

(1 − µ)
µ

[
m∗ − (m∗ − m2

1)(1 − γ)
1 − γ(1 − µ)

]
+

m2

m1
− 1
)
− m1

µ
(71)

and by (66) we get the peakedness curve.
It is interesting and important to note that the peakedness curve depends on the

SBBP parameters only through m1, m2, m∗, γ. Therefore, we can get identical peaked-
ness values for different SBBPs if these four parameters coincide.

Batch renewal process The batch renewal process is important to consider because
of its ability to model the correlation structure of traffic [58]. The discrete time batch
renewal process is made up of batches of arrivals, where the intervals between batches are
independent and identically distributed random numbers, and the batch sizes are also
independent and identically distributed, furthermore, the batch sizes are independent
from the intervals between batches.

We use the following notation for the discrete time batch renewal process: a and b are
the mean length of intervals between batches and the mean batch size, respectively. The
first and second moments of the number of arrivals in an epoch is given by m1 = b/a,
and m2 = m1b(C

2
b +1) where C2

b is the squared coefficient of variation (variance to mean
square ratio) of the batch size. The probability generating function of the distribution
of time between batches is denoted by A∗(ω). (A∗(ω) =

∑∞
s=1 a[s]ω

s where a[s] is the
probability that the time between two consecutive batches is s.)

We have derived the peakedness for geometric holding times which is given by [83]

zgeo(µ) = 1 +
1

2 − µ

(
1 + A∗(1 − µ)

1 −A∗(1 − µ)
− b+

m2

m1
− 1

)
− m1

µ
(72)

If the distribution of time between batches follows a shifted generalized geometric
distribution [58], that is, a[t] = 1 − σ if t = 1 and a[t] = στ(1 − τ)t−2 if t = 2, 3, . . . ,

then its probability generating function is: A∗(ω) = ω
(
1 − σ + στω

1−(1−τ)ω

)
which makes

the peakedness values easily computable.
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Fitting traffic models to peakedness curves The peakedness shows the variability of
the arrival stream with respect to different service holding times. It is of interest to in-
vestigate whether we can fit traffic models to peakedness curves based on measurements.

We outline here a fitting procedure based on the mean rate m1 of the arrival traffic,
the peakedness value at µ = 1 and at three other points, µ1, µ2, µ3. The model we fit
to the peakedness curve is an interrupted batch Bernoulli process (IBBP): in one state
of the modulating Markov process, the arrival number has a general distribution, in the
other state, there are no arrivals.

First, by z(1) = m2/m1 − m1, we get m2. Introducing ω = 1 − µ, ωi = 1 − µi

and using the notations of section 4.2.1, we can compute (using the values K∗(ωi) =
(zgeo(µi) − 1)(ωi + 1) + 1)

Yi = Y (ωi) = m1
1 − ωi

2ωi

(
K∗(ωi) +m1

1 + ωi

1 − ωi
− m2

m1

)
(73)

Using (71), Y (ω) = m∗ − (m∗−m2
1)(1−γ)

1−γω

Let us denote Ỹ = Y1−Y2

Y2−Y3
which evaluates to Ỹ =

(
ω2−ω1

ω3−ω2

)(
1−γω3

1−γω1

)
and we get

γ =
Ỹ

ω3−ω2
ω2−ω1

−1

Ỹ
ω3−ω2
ω2−ω1

ω1−ω3
Once we have γ, we can obtain an estimation for m∗ as m∗ =

1
3

∑3
i=1

Yi−m2
1(1−γ)

1−γωi

1− 1−γ
1−γωi

where we have on the right hand size an average for the known values

ωi, Yi.
Then it is possible to fit an IBBP (no arrivals in state 2) as follows: m1,(1) = m∗

m1
, α2 =

m1(1−γ)
m1,(1)

, α1 = 1 − γ − α2, m1,(2) = m2
α1+α2

α2
. Given the first and second moments of the

number of arrivals in state 1, we can use for example a generalized geometric distribu-
tion for modeling the batch size distribution. In this case, there are no arrivals with
probability 1 − ϕ, and there is a batch of arrivals with geometrically distributed size of
parameter ψ. The moments are given by m1,(1) = ϕ/ψ, m1,(2) = ϕ/ψ2 by which we can
get ϕ, ψ for the model.

If it is possible to exactly fit an IBBP to the µi, zgeo(µi) pairs, the values that are
summed in the equation for m∗ are identical. If there is no IBBP that exactly fits the
given peakedness values, m∗ gives an estimation and the peakedness curve of the fitted
IBBP model approximates the µi, zgeo(µi) pairs.

4.2.2 Generalized peakedness of real traffic

Measuring peakedness To measure the generalized peakedness of a traffic with a given
holding time distribution, one can simulate the infinite server group. In discrete time,
one can keep track of the first and second moment of the number of busy servers and
compute the variance to mean ratio from them. The following points should be made
about the estimation.

• We should take care of the initial phase of the simulation. If we have no prior
knowledge about the traffic, we do not know what the mean number of busy
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servers will be. In this case, we can start from an empty system. The initial
transient in the number of busy servers should be excluded from measurements.

• According to the definition, we should assign a server to each arrival, that is, assign
a random holding time variable to every arrival in an epoch, which could involve
a huge amount of computational effort. However, using the modified definition of
peakedness and (64), we can reduce the computational effort by assigning only one
random service time variable to all arrivals in an epoch.

• When the service time is geometric, we can minimize the computational effort by
making use of the memoryless property. If at epoch t we have L[t] busy servers,
then at the next epoch we have L[t+ 1] = L[t] + w[t+ 1] −D[t] where D[t] is the
number of departures from the service system at epoch t.

The distribution of D[t] is known to be binomial with parameters L[t] and µ
because each of the L[t] servers finish service with probability µ. Therefore, in the
measurement, it is enough to keep track of L[t] together with the first and second
moments of the previous L[i], i ≤ t values.

This gives us the following procedure for computing the peakedness value for geo-
metric holding time distribution with parameter µ:

1. Reset L1 = 0, L2 = 0, Lold =initial value (see comments below);

2. Set Lnew = Lold + wnew − d where d is a random number with distribution
binom(Lold, µ) and wnew is the number of new arrivals in the next epoch;

3. Set L1 = L1 + Lnew, L2 = L2 + L2
new;

4. Set Lold = Lnew and loop back to 2 unless the measurement is over;

5. Compute l1 = L1/T, l2 = L2/T, z = l2/l1 − l1 where T is the length of the
total measurement time.

The setting of the initial value of Lold depends on the amount of a priori information
that we have about the traffic. If we know the mean rate, we can set the initial Lold

to its mean value determined by Little formula as m1/µ. If we do not know the
mean rate, we have to start from an empty system (initial Lold = 0) and simulate
the service system without actually measuring (executing step 3) until the initial
transient is over.

• An important advantage of using peakedness characterization is that we can mea-
sure peakedness by going through the traffic trace in only one sequence. This gives
us the possibility of measuring peakedness for real-time traffic on the fly.

Computing peakedness for one value of µ involves N cycles of the above procedure
(where N is the total length of the measured traffic); if we want to measure peaked-
ness at several µ values, we can easily implement the parallel execution of the pro-
cedure. In each cycle, we only have to compute a small number of additions and
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multiplications, and generate one binomially distributed random variable. There-
fore, the complexity of the measurement is O(N). The most time-consuming step
in the measurement is the generation of the binomially distributed random num-
ber. We can reduce the computational cost of the measurement tremendously
by approximating it with a normally distributed random number, for which pre-
computed look-up tables can be used.

• It is interesting to note that the measurement of peakedness involves randomness
due to the simulation of servers, which means that for one sequence of traffic
we could get different peakedness values. Experiments show that the peakedness
measurements do not change significantly if we compute them more than once.

• The advantage of our approach compared to Eckberg’s method for estimating
peakedness for exponential holding times (cf. [27, 81]) is that our method does
not neglect a lot of arrivals in the computation due to the selection of an arbitrary
arrival.

Peakedness of video traffic Video traffic is a very important example of variable rate
traffic. We investigated the application of peakedness measure for the characterization
of variability of MPEG video traces [106]. In the MPEG coding scheme, the sequence
of frames are divided into Groups of Picture (GOP), where each GOP is made up of so-
called I, P and B frames. I frames are the largest because no prediction is used for coding
them; P and B frames are smaller because one and two-directional prediction decreases
the amount of information to be coded. The MPEG sequences that we considered had
a GOP (Group of Pictures) length of 12 frames, a GOP pattern of IBBPBBPBBPBB,
and frames capture frequency of 25 frames per second.

Figure 62(a) shows the peakedness curve of an an MPEG video trace of a movie
(MrBean) as a function of the service rate µ. The mean service time of a server is
therefore 1/µ time epochs, where one time epoch is now 40ms. The solid curve is
the peakedness function for the frame sequence (one frame corresponds to one epoch),
whereas the dashed curve is the peakedness function for the GOP sequence (one GOP
corresponds to 12 epoch so that is has the same time-length as the frame sequence) The
scaling in the vertical axis is such that one arrival corresponds to one bit.

By decreasing the service rate, the service times become longer, and the number of
busy servers in the infinite server group depends on the traffic properties on longer time
scales. In this way, the peakedness curves show the variability of the traffic on different
time scales, i.e. on the time scale of 1/µ.

Figure 62(a) shows that on short time scales, the variability of the frame sequence is
much greater compared to the GOP sequence. But as we go to longer and longer time
scales, the variability of the two sequences converge. What we can learn from this is
that on longer time scales (for example, when dimensioning larger buffers), the statistical
characteristics of GOP structure is less significant, and it is enough to consider the GOP
sequence.
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Figure 62(b) shows the peakedness curves for geometric service time distributions for
five MPEG video GOP size traces. It gives us a relative comparison of the variability
of different kinds of video sequences. (In this figure, one time epoch is set to one GOP
which introduces a scaling compared to Figure 62(a).) The highest values of peakedness
are exhibited by the MTV sequence, which is known to have lots of scene changes. Movie
sequences show lower peakedness compared to the MTV sequence. The peakedness of a
video conference sequence is found to be the smallest by orders of magnitude.

Figure 62(c) shows an IBBP fitted to an MPEG movie trace (MrBean, [106]). The
solid line is the peakedness curve of the GOP sequence, the dashed line shows the
peakedness curve of the fitted model. The circles show the peakedness values where the
fitting was made. The points were chosen to represent the variability of the traffic on a
long time scale (corresponding to the time scale of 1/0.01=100 epochs, here one epoch
corresponds to 0.48 sec). As we can see, the model is able to capture the variability of
the arrival stream on the investigated time scales.

Peakedness of aggregated ATM traffic We analysed the peakedness curve of an
aggregated ATM traffic trace taken from the Finnish University and Research ATM
WAN network (FUNET) [89]. The trace was approximately one hour long and consisted
of the number of cell arrivals in each second. Figure 62(d) shows the peakedness curve
of the measurement and two IBBPs fitted to it. The IBBP that was fitted at short time
scale fits the measured peakedness curve well for shorter time scales, but it gives lower
peakedness values for time scales longer than 1/0.05 = 20sec. The other IBBP was fitted
at a longer time scale; this model gives lower peakedness values for time scales shorter
than 20sec.

Peakedness of Ethernet traffic Figure 62(e) shows the peakedness curve of IP packet
traffic on an Ethernet [62] (we used 136 000 packet arrivals, about 428 seconds). Fig-
ure 62(e) shows the peakedness curve of aggregated ATM traffic [89] Two Markovian
models (IBBPs) are fitted to the curves. The figure shows that the IBBPs are more
variable on shorter time scales, but less variable on longer time scales.

Figure 62(e) and Figure 62(f) show the peakedness curve of an Ethernet traffic taken
from the Bellcore measurements [62]. The measurement covers 1 million arrivals (approx.
one hour). Figure 62(e) depicts peakedness on a lin-lin plot, Figure 62(f) is a log-log
plot. We can investigate 5 different time scales in Figure 62(f). The interesting finding
is that the peakedness increases linearly on the log-log plot as we decrease the rate (go to
long time scales). Due to (68) and knowing that lims→∞ I[s] = ∞ if there is long range
dependence (LRD) in the traffic, the peakedness diverges as the rate goes to zero. This
observation of monotonicity in Figure 62(f) supports the presence of LRD assuming that
the traffic stationarity assumption holds. It is important to note that the peakedness
curve can be used as an indicator of LRD.

At different time scales we fitted simple Markovian models (IBBPs) to capture the
peakedness curves in Figure 62(f). We can see that the burstiness scaling property of
these models are not appropriate i.e. these models can cover a shorter range of time
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scales in burstiness than it would be necessary to follow the burstiness of the real traffic
over all the investigated time scales.

Our investigations of the aggregated ATM and Ethernet traffic indicate that simple
Markovian models are not able to capture the burstiness characteristic of traffic over
many time scales. For this case fractal traffic models seem to be more appropriate
[89, 62]. However, for several practical cases we do not need to focus on all time scales
but only on our working time scales (e.g. time scales of queueing) which can be efficiently
modeled by Markovian models, too.

4.2.3 Summary

We have shown that peakedness can be used to characterize the bursty nature of traffic.
Peakedness curves show the variability of traffic on different time scales and can be
efficiently computed for real time traffic. We have extended the peakedness theory to
discrete time and applied the peakedness characterization to variable rate video traffic,
Ethernet traffic and aggregated ATM traffic as well as to the most important traffic
models. We have shown that generalized peakedness can also be used for detecting long
range dependence. We have also presented a new model fitting technique based on the
concept of peakedness.

The basic idea of peakedness characterization is that we characterize traffic by its
interactions with the service system. Although the traffic is usually offered to more
complicated queueing systems, it is difficult to use complicated systems for character-
ization because it is very hard to handle them analytically. The infinite server group
may be regarded as a compromise between generality and analytical tractability. Its
generality is shown by the observation that peakedness gives a complete second order
characterization, i.e. it contains all information about the correlation structure of the
traffic.

Most statistical measures, including peakedness, require the traffic to be stationary.
However, the fact that we characterize the traffic by the reaction of a server system
indicates that it is possible to extend it for non-stationary traffic which is problematic
e.g. for IDC characterization. There are also other motivations for future research
on peakedness measures: one is that, as we observed before, several Markovian arrival
streams may have identical peakedness curves (because their correlation structure is
identical); another motivation is that the peakedness characterization takes into account
only the first and second moments of the arrival counts and in this way it fails to
characterize the tail distributions sufficiently. Our future research will address these
questions. The further development of peakedness theory including its extension to
characterize non-stationary traffic are the topics of our future research.
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5 Internet traffic characterization

The behaviour of Internet users has a major impact on the performance of networks
and services. Especially telephone network operators are interested in descriptions of
user generated Internet traffic to be able to adjust their current networks to the growing
demand. Such traffic descriptions must be based on measurements of real traffic.

The modem pool at the University of Stuttgart offers the possibility to observe the
users session behaviour in large scale and for a sufficiently long period. With around
4000 subscribed students and 800 subscribed staff members, the user population is large
enough to draw conclusions on general user behaviour.

In this section we present the results of an evaluation of the modem pool log data
from May to October 1997 with 369100 sessions [31]. The log data contain information
on the login and holding times for access sessions. In contrast to many other publications
concentrating on the packet level, we focus on this session level, i.e. the characteristics
of the users dialup sessions without regarding the type and quantity of information
transmitted during the sessions.

5.1 Session behaviour

The automatic monitoring of the user login times at the modem pool of the University of
Stuttgart allows the evaluation of characteristic measures on session level. Since students
and members of staff are assigned two separate modem pools, we distinguish between
these two user groups. Note, that there is no way to specify the type of session the user
has started. While in most cases it can be expected to be a World Wide Web session, it
may also be a telnet session, an ftp or a simple email retrieval or a mix of those traffic
types.

In the following sections we describe the holding time of the sessions, the interarrival
time between session starts and the mean daily traffic profile for traffic load. These
measures allow to characterize the frequency and duration of a typical user session.

5.1.1 Holding time

Under the holding time of a session we understand the duration of the seizure of a
modem. The mean holding time was around 21 minutes for students and 20 minutes
for staff members. However the holding time shows a high variability. When comparing
the students of different subjects the observed mean holding time varies from 8 to 31
minutes. Single users have even been online for several days. The maximum holding
time was 11 days.

The holding time varies strongly during the course of the day. Figure 63 shows the
holding time of sessions (of both user groups) associated with the time of the session
start. Although this representation has to be regarded with caution (the average during
the night is calculated from a relatively small number of calls), it allows the conclusion
that long sessions start mainly during the night and early morning hours. Also the mean
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Figure 63: Mean holding time during the day

session length at night is significantly larger than during the day time. The average
sessions in the mornings or during the day of non-workdays are longer.

In [94] Morgan reports a significant peak in holding time at 4 am. If the holding time
would have been drawn associated with the session endings we would have obtained a
peak at 4 am as well. This means that among sessions that end in the early morning,
most have lasted for a long time and only few are of a short duration.

The high variability of the holding time is visible in the complementary cumulative
distribution function (CCDF) which is depicted in Figure 64. The function shows the
probability of a holding time being greater than the value on the horizontal axis. While
there is a high probability for holding times of less than 2 hours the logarithmic presen-
tation reveals that there is a small but not negligible probability for long sessions of 20
hours and more. This so-called ,heavy tail” is an indication for high variability of large
values ([22]). The coefficient of variation of the holding time data is around 2.8 (i.e. the
standard deviation is of the magnitude of 2.8 times the mean value).

5.1.2 Interarrival time

The interarrival time is the time between two consecutive session beginnings. This time
can be measured either for sessions of individual users or for the sessions of all users.
The first case leads to a description of the login frequency of a user while the latter one
allows a description of the aggregate session arrivals as seen by the access provider.

For the aggregate traffic of 4900 subscribers the mean session interarrival time was
40 seconds. In contrast to the holding time discussed above, the interarrival time of
aggregate sessions depends strongly on the number of participating users. The CCDF of
the interarrival time of the aggregate traffic would be only a description of the behaviour
of a group of 4900 users. To allow a comparison with other data we have scaled this
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Figure 64: Complementary cumulative distribution function of the holding time
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Figure 65: Complementary cumulative distribution function of the interarrival time
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Figure 66: Mean arrival rate per user during the day

CCDF to describe the interarrival time per user (Figure 65). The scaled curves for 4100
students and 800 staff members fit amazingly well. Again a high variability is found for
longer interarrival times which is indicated by the tail of the CCDF.

Figure 66 shows the mean session arrival rate per user during the course of the day
for a typical weekday and on weekends. It is obvious that most sessions start during the
afternoon and evening. In the early morning far less sessions are originated.

If the interarrival time is measured between sessions of individual users, a completely
different distribution is received. Figure 67 shows the resulting complementary cumu-
lative distribution function (average of all individual interarrival times of students as
well as of members of staff). The curve shows characteristic steps in regular distances of
24 hours for both user groups. The same behaviour can also be found when regarding
smaller user groups like students of certain fields. It is explained by the preferences of
the users who tend to go online at a certain time of the day although not necessarily ev-
ery day. Many users prefer for example to make use of cheaper telephone tariffs starting
at 6 pm and 9 pm. Although this periodic behaviour is mostly due to telephone tariffs
it is also caused by personal habits or work times of users.

Obviously there is a strong impact of the natural day and night shift, the working
hours, individual preferences and tariffing schemes that leads to a periodic behaviour of
end users. This periodicity may lead to unfortunate aggregation of traffic load but it
may also be useful in influencing user behaviour in order to shift busy hours and balance
network load.

5.1.3 Traffic load

To cope with the originated traffic, a telephone network must offer sufficient resources in
terms of bandwidth (i.e. telephone lines) and connection setup capacity (i.e. processing
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Figure 67: Complementary cumulative distribution function of the session interarrival
time for individual users

power). Therefore we distinguish between traffic load related to user traffic (the seizure
of the modem lines) and signalling load corresponding to the call arrival rate (see also
Figure 66) to describe the actual load of the access network.

The average values for user traffic load and signalling traffic load for all days of the
observed period are shown in the mean daily traffic profile in Figure 68. To allow a
better comparison, both values are depicted in the same figure and are drawn in relation
to their maximum values (the actual maximum values are 49 Erlang for the mean traffic
load and 130 calls per hour for the mean arrival rate - note that only successful calls
and no rejected calls could be detected at the modem pool). For this evaluation only
the student modem pool with 56 modems and 4100 subscribers is taken into account.

The general shape of the traffic profile is almost complementary to the classic tele-
phone traffic profile which has its busiest hours during the day and decreases at the end
of the day. The shown traffic profile is certainly not typical for dialup sessions in general,
but it is typical for the behaviour of home users who usually dial up after work hours.

The most obvious characteristics of the mean seizure are the two steps at 6 pm and 9
pm. As already mentioned above, these times mark the beginning of cheaper telephone
tariffs during the observed period. A small peak is also visible right before 9 am when
the expensive day tariff starts. On weekends and holidays the day tariff is the same as
in the evening and morning hours and therefore no such steps are visible at 9 am and 6
pm. The user behaviour follows these tariffing scheme amazingly accurate.

The flat shape around midnight is due to the limited number of modems. It is
interesting that there is a lot of traffic during late night and early morning hours. A
comparison with the arrival rate indicates that this traffic is caused by few but long
sessions (see Figure 63).

The time consistent busy hour for user traffic load is found at 11:45 pm to 0:45 am
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Figure 68: Mean daily traffic profile for traffic load and arrival rate (students only)

and for the arrival rate it is found at 6 pm. In [14] Bolotin points out, that these two
busy hours are significantly shifted against each other for Internet traffic compared to
telephone traffic. This phenomenon is caused by much longer holding times of around
20 minutes (compared to 3 minutes for classical telephone calls). For design and dimen-
sioning of network components, traffic load has to be evaluated carefully for both busy
hours.

5.2 Modelling dialup session behaviour

For performance evaluation of communication systems by performance analysis or simu-
lation, source traffic has to be modelled to assess the system behaviour. Complex traffic
is best described with the help of empirical data. Either a logged traffic trace is replayed
into the system model or a mathematical description can be found to generate stochastic
traffic of similar characteristics.

To describe traffic load on session level it is important to know about the holding
time and the session interarrival time. The complementary cumulative distribution func-
tions of these measures capture their most important characteristics. If mathematical
functions can be found that describe the CCDFs, they can be used to parameterize a
random generator. This generator may then provide a simulation with values for the
measure of interest according to that CCDF.

While classic telephone traffic is well described with negative exponentially dis-
tributed holding times and call interarrival times this is not true for Internet access
session traffic any more. The high variability of the measures described above is not
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Table 5: Cumulative distribution functions of Pareto, Weibull and the hyperexponential
distributions

Pareto distribution Weibull distribution hyperexponential distribution
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Figure 69: Fitting of several functions to the CCDF of the holding time

captured by this distribution. For the description of Internet traffic other distributions
have been proposed like Pareto, hyperexponential or Weibull distributions (e.g. [21],
[33], [73], [109]).

In the following sections these distributions are fitted to the empirical distributions
of the traces and the resulting parameters are presented (see Table 5). We use the
Marquardt-Levenberg algorithm to find a set of parameters for each function. This
iterative algorithm performs a non linear least square fit.

5.2.1 Holding time

Figure 69 shows the results of the fitting operations to the CCDF of the session holding
time. Obviously the Pareto distribution is not suited to describe this measure. The
Weibull distribution, on the other hand, leads to a rather good fit and also the hy-
perexponential distribution describes the behaviour accurately to a certain point. The
resulting parameters of the fit can be found in Table 6.

The table also shows the resulting mean value and the coefficient of variation of the
parameterized functions in case they do exist. While the mean values for the Weibull
and hyperexponential functions are close to the empirical mean, the variability of the
real measure is still significantly higher.
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Table 6: Resulting parameters of the fitting operation for the holding time
distribution parameters mean [min] CoV
Trace – 20.6 2.8
Pareto α = 0.649, k = 1.265 ∞ ∞
Weibull α = 0.584, β = 12.544 19.569 1.82
hyperexponential p1 = 0.436, p2 = 0.257,

λ1 = 0.072, λ2 = 0.020, λ3 = 0.73
19.201 1.71
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Figure 70: Fitting of several functions to the CCDF of the interarrival time

5.2.2 Interarrival time

As depicted in Figure 70 the scaled CCDF of the interarrival time (of the summary traffic
of all subscribers) is best approximated by a Pareto or a hyperexponential distribution.
The Weibull distribution can be fitted either to head or tail of the empirical distribution
and is not well suited for its description. Table 7 shows the resulting parameters for all
fitted functions as well as the corresponding mean values and the coefficients of variation.

Table 7: Resulting parameters of the fitting operation for the interarrival time
distribution parameters mean [min] CoV
Trace – 2.424 2.4
Pareto α = 1.453, k = 0.964 3.095 ∞
Weibull α = 0.879, β = 2.091 2.230 1.272
hyperexponential p1 = 0.926, p2 = 0.064,

λ1 = 0.528, λ2 = 0.137, λ3 = 0.031
2.524 2.040

For the interarrival time as for the holding time, the hyperexponential distribution
is difficult to fit to the CCDF because of its numerous parameters. The choice of the
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starting values is significant and the characteristic heavy tail is not captured accurately.
If a hyperexponential distribution is chosen to describe the traffic, a more systematic
approach would be preferable as is suggested by Feldmann and Whitt in [33].

5.3 Summary

We have presented the traffic characteristics of dialup sessions monitored at the modem
pool of the University of Stuttgart. The long holding times and the high variability of
holding time and interarrival time can be found in other publications as well and seem
to be typical for Internet traffic. We have also shown that the user behaviour is heavily
influenced by the employed telephone tariffing scheme.

Finally a simple mathematical description of the holding time as well as of the in-
terarrival time was presented. Note that the current modelling approach captures the
overall behaviour of the traffic. As depicted in Figure 68 the traffic characteristics vary
during the course of the day. Therefore, a model describing traffic load only during the
busy hours of internet traffic as well as of telephone traffic would be helpful for network
dimensioning.

We like to point out, that our results are based on empirical data of a special user
group (students and university staff members) and might not describe general Internet
traffic. Also the behaviour was strongly influenced by the telephone tariffing scheme in
Germany and it should be mentioned that the fast Internet access itself was provided
for free.
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