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1. Introduction

The most common choice for telecommunication network design is based on the exponential assumption. Usual choice is the Poisson arrival of the calls or sessions and exponential holding times. However today's networks and applications generate a traffic that is bursty over a wide range of time scales. A number of empirical studies has shown that the network traffic is self-similar or fractal in nature. 

The traditional teletraffic engineering usually fails in predicting today's traffic. Using Poisson processes to model packet arrivals in a computer network will certainly lead to a failure simply since there is far too much correlation among packet arrivals to have an assumption of independent arrivals. Poissonian or Markovian processes have one good characteristic that the burst lengths tend to be smoothed by averaging over a long enough time scale. 

However, the traffic measurements have shown that there is a significant traffic variance over a wide range of time scales. A range of characteristics of "modern" traffic could be heavy tailed distributions. This report concentrates on the heavy tailed distributions and their applications in teletraffic modeling of communication networks

Several articles are used for this report. The following is a brief description of each of them:

In [Bolotin1994] the author gives an analysis of telephone circuit holding time distributions based on two notions:

a). the human perception of time on a logarithmic scale and

b). "a fundamental fact" that the holding time distribution in a call mix is a mixture of distributions.

The author bases the study on empirical data of various call types, and argues that each individual component of the total circuit holding time may be modeled as a mixture of two or more distributions. The same author (or at least author with the same name) develops further this idea and finds out in [Bolotin1999] that the mixture of lognormal distributions is a good model for several traffic characteristics.

Studies related to Wide area traffic are reported in [Paxson1994] and [Paxson1995]. In-depth description of measured traffic generated by TCP applications are given in both papers. Heavy tailed distribution is used to model several processes.

In [Crovella1997] the authors show the evidence that the WWW traffic show characteristics that are consistent with self-similarity. In addition the authors explains the reason for self-similarity. In [Crovella1998] heavy tailed properties of different characteristics of the WWW traffic are shown.

Similar approach, but a bit more formal by reporting limit theorems is shown in [Willinger1998].

This report is heavily based on these articles, but leaves out the details of the protocols and applications that are used in these references. The report starts with a description of self-similarity and heavy tailed distributions. Few examples of heavy tail distributions in modeling different processes are given.

2. self-similarity

2.1 Definition of self-similarity

There are a number of different, not equivalent definitions of self-similarity. The standard one is the following:

Definition 1. A continuous-time process Y={Y(t), t ( 0} is self-similar with self-similar parameter H if it satisfies the condition:
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where the equality is in the sense of finite-dimensional distributions. Note that a process satisfying (1) can never be stationary but Y is typically assumed to have stationary increments.

Definition 2. Consider a stationary sequence X={X(i), i ( 0}. Let
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be the corresponding aggregated sequence with level of aggregation m, obtained by dividing the original series X into non-overlapping blocks of size m and averaging each block. The index, k, labels the block. If X is the increment process of a self-similar process Y defined in (1), that is, X(i)=Y(i+1)-Y(i), then for all integers m,
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A stationary sequence X={X(i), i ( 0} is called exactly self-similar if it satisfies (3) for all aggregation levels m. A stationary sequence X(i), i ( 1 is said to be asymptotically self-similar if (3) holds as m ->(. Similarly, a covariance-stationary sequence X(i), i ( 1 exactly second-order self-similar or asymptotically second order self-similar if m1-HX(m) has the same variance and autocorrelation as X, for all m, or as m->(. 

The self-similar processes can show long range dependencies. A process with long range dependence has an autocorrelation function r(k)~k-( as k->( where 0 < ( <1. So the autocorrelation function of long range dependence process follows a power law, and this is different from the exponential decay nature of traditional traffic models. Power-law decay is slower than exponential decay, since ( <1, the sum of the autocorrelation values of such series approaches infinity. 

The degree of self-similarity of a series is expressed using only a single parameter. The parameter expresses the speed of decay of the autocorrelation function of the series. The parameter used is the Hurst parameter H=1-(/2. So for self-similar series with long range dependence, 1/1<H<1. As H approaches 1, the degree of both self-similarity and long range dependence increases. 

2.2 Statistical Tests for Self-Similarity

There are several methods to test self-similarity. The following is a description of four methods that could be used for testing self-similarity. 

1. The variance-time plot is one method. It relies on the slowly decaying variance of self-similar tests. The variance of X(m) is plotted against m on a log-log plot; a straight line with slope (-()>-1 is indicative of self-similarity, and the parameter H is given by Hurst parameter (H=1-(/2). 

2. The second method, the R/S plot, uses the fact that for a self-similar dataset, the rescaled range or R/S statistic grows according to power law with exponent H as a function of the number of points included (n). The plot of R/S against n on a log-log plot has a slope which is an estimate of H.

3. The third approach, the periodogram method, uses the slope of the power spectrum of the series as frequency approaches zero. On a log-log plot, the periodogram slope is a straight line with slope (-1=1-2H close to origin. 

4. The forth method called the Whittle estimator is more enhanced in the sense that it provides confidence interval, but has the drawback that the form of the underlying stochastic process must be supplied. The most commonly used forms are fractional Gaussian noise and fractional ARIMA.

2.3 Generating self-similar traffic

There are several methods for producing self-similar traffic. Heavy tailed distributions have been suggested as a cause of self-similarity in network traffic. It is commonly accepted that if traffic is constructed as the sum of many ON/OFF processed, in which individual ON or OFF periods are independently drawn from a heavy tail-tailed distribution, then the resulting traffic series will be asymptotically self-similar. If the distribution of ON or OFF times is heavy-tailed with parameter (, then the resulting series will be self-similar with H=(3-()/2. If both ON and OFF times are heavy tailed, the resulting series H is determined by whichever distribution is heavier tailed, i.e., has the lower  (.

Another method for generating self-similar traffic was reported in [Paxson1995]. The authors use an M/G/( queue model, where customers arrive according to a Poisson process and have service times drawn from a heavy tailed distribution with infinite variance. In this model, X​t is the number of customers in the system at time t. The count process {Xt}t=0,1,2,… is asymptotically self-similar. The M/G/( queue model implies that multiplexing constant-rate connections that have Poisson connection arrivals and a heavy tailed distribution for connection lifetimes would result in self-similar traffic.

In the same article [Paxson1995] the authors report an additional method of producing arrival processes that appear to some extent self-similar. This method involves constructing arrivals using i.i.d Pareto interarrivals with parameter ((1, and then considering the corresponding count process (the number of arrivals in consecutive intervals). This method is referred as "pseudo-self-similar" because while the traffic it generates has a large-scale correlation and the visual self-similarity property over many time scales, the traffic is not actually long-range-dependent.

Heavy-tailed distributions

2.4 Definition of a heavy-tailed distribution

Definition 3. The random variable X follows a heavy tailed distribution if 
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Definition 4. The random variable X follows a heavy tailed distribution if the conditional mean exceedance (CMEx) of the random variable X is an increasing function of x, where
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The second definition is a more general- If we use this definition, consider a random variable X that represents a waiting time. For waiting times with a light-tailed distribution such as the uniform distribution, the conditional mean exceedance is a decreasing function of x. For such a light tailed distribution, the longer you have waited, the sooner you are likely to be done. For waiting times with a medium-tailed distribution such as the exponential distribution, the expected future waiting time is independent of the waiting time so far. In contrast, for waiting times with a heavy-tailed distribution, the longer you have waited, the longer is your expected future waiting time. 

2.5 Example distributions with heavy-tail characteristics

2.5.1 Pareto distribution

The simplest heavy-tailed distribution is the Pareto distribution, with pdf:
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and cdf:
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If ( ( 2, then the distribution has infinite variance, and if ( ( 1, then it has infinite mean.

The Pareto distribution is referred to also as power-law distribution, the double-exponential distribution, and the hyperbolic distribution. It has been used to model distributions of incomes exceeding a minimum value, and sizes of asteroids, islands, cities, and exctintion events. 

The conditional mean exceedance for the Pareto distribution is a linear function of x:

CMEx=x/((-1)




(8)

The Pareto distribution is scale-invariant, in that the probability that the wait is at least 2x seconds is a fixed fraction of the probability that the wait is at least x, for any x(k.

Further, the Pareto distribution is the only distribution that is "invariant under truncation from below". This means that for the Pareto distribution, for y(x0,

P[X>y | X>x0]=P[(x0/k)X>y].



(9)

So the conditional distribution is also a Pareto distribution, with the same shape parameter and new scaling parameter k'=x0. 

2.5.2 Weibull distribution

Another heavy-tailed distribution is Weibull with pdf:
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2.5.3 Lognormal Distribution

Although lognormal distribution is sometimes reported as a heavy-tailed distribution, it can be shown that using Definition 3 the lognormal distribution is not actually heavy-tailed. 

The pdf of the lognormal distribution is:
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2.5.4 Estimating tail weight

The challenge in modeling the network traffic with heavy-tailed distributions is on estimating the shape parameter (. There are at least two methods that are used to estimate that parameter:

1. Log-log complementary distribution (CD) plots; and

2. The Hill estimator

CD plots show the complementary cumulative distribution on log-log-axes. Plotted in this way, heavy tailed distributions have the property that 
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for large x. The authors in [Crovella1998] obtain an estimate for the shape parameter by plotting the CD plot of the dataset and selecting the minimal value x0 of x above which the plot appear to be linear. Then they select equally spaced points from the CD points larger than x0 and estimate the slope using least-squares regression. Equally spaced points are used because the point density varies over the range used, and the preponderance of data points for small file sizes would otherwise unduly influence the least-square regression.

The Hill estimator gives an estimator of ( as a function of the k largest elements in the data set and is defined as
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where X(1)(… ( X(n) denote the dataset's order statistics, i.e., the data items are arranged according to size. In practice the Hill estimator is plotted against k for small values of k; if the estimator stabilizes to a consistent value this provides an estimate of (. Although the Hill estimator is plotted against k, it seems to be more informative to plot it against log k and this is done in [Crovella1998]. 

Examples of the heavy-tailed distributions in network traffic modeling

 The heavy-tailed distribution is used to model many aspects of the traffic that is carried out through modern communication networks. There are different reports on the way the modeling is done. In general the modeling is based on the measurements on various network topologies, ranging from LAN to WAN. The traces or datasets obtained by those measurements are analyzed in different ways. In [Crovella1998] the analyzing is done on the Web traffic but several detailed aspects were taken into account, for example the caching by the web browser. The measurement were used also in  [Willinger1998], however, the measurements were done at the network level, i.e. Ethernet LAN and the traffic was monitored "blindly", meaning that the authors monitored only the timestamp. Measurements in WAN went a bit further by analyzing the TCP connections too. 

In [Paxson1994] and [Paxson1995] Internet applications of that time were analyzed, Telnet NNTP, SMTP and FTP. The WWW samples were too small to be taken very seriously.

[Bolotin1999] reports holding time on circuits providing access to an ISP, then something that author calls message length in a flow and All LAN traffic as well as E-mail message length.

The following is a brief description of main characteristics of the reported traffic models.

2.6 WWW

[Crovella1998] used five datasets: file requests, file transfers, transmission times, unique files, and available files. 

The set of the transmission times appear to exhibit heavy-tailed characteristics. This applies to all components, file requests, file transfers, unique files and available files. The CD plot of the duration of all file transfers shows that for values greater than –0.5 the plot is nearly linear, consistent with power law upper tail. The estimated value for ( is 1.21 and transmission times behave more like Pareto than the lognormal distribution. The estimated values for other components are for file requests (=1.16, file transfers (=1.06, unique files (=1.05 and for available files (=1.06.

One important argument in explaining the heavy tail in file request is that the reason for that is not due to actual file requests, rather the reason lies in what is available in the Web.

2.7 Holding time on circuit providing access to an ISP

It was reported in [Bolotin1999] that the average holding time on the ISP access circuits is about 35 minutes, a single connection may be as long as 24 hours. The ISP access circuit holding time distribution was described using a mixture of two lognormal distributions. 

2.8 Example of E-mail Message length

In the same article the author describes the email message size distribution as a mixture of 3 lognormal distributions. The dataset was based on the sample of 1760 emails received by one computer during a period of almost 2 years.

2.9  TELNET and FTP

The telnet traffic connection arrival times are well modeled as Poisson with fixed hourly rates as reported in [Paxson1995]. However the exponentially distributed interarrivals that was commonly used to model packet arrivals is not the appropriate model. There is a strong burstisness in the traffic and it was shown that the arrival pattern of user-generated TELNET packets has an invariant distribution, independent of network details. Telnet packet interarrivals exhibits a heavy tailed distribution and this was one of the argument to express the failure of Poisson modeling for interarrival process.

The FTP modeling was not done on per-connection fashion. It was argued that the FTP connection is largely dominated by the network characteristics, like available bandwidth and not by the originator packet arrival process. The FTP data bytes distribution seems to fit well with Pareto, where the shape parameter ( was between 0.9 and 1.4. 

Conclusion

The traditional teletraffic engineering usually fails in predicting today's traffic. Using Poisson processes to model packet arrivals in a computer network will certainly lead to a failure simply since there is far too much correlation among packet arrivals to have an assumption of independent arrivals. 

The modern network traffic exhibits a heavy tailed distribution of many of its components. This report gave an overview of the heavy tailed distributions and gave few reported examples of the presence of the heavy tails in the network traffic.
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