Digital Signatures

- Why do we need digital signatures?
 - To confirm the identity of the sender of a message
 - To confirm a message has not been altered during transfer
 - Signing a message is much faster than crypting the whole message but is cryptographically as strong

How does it work?

 A document can be signed using assymetrical cryptography and digest functions

How does it work?

Verification of the signature

- The digest function must have the following properties
 - The digest must be easy to calculate
 - The function must be a one way function
 - It should be almost impossible to get the same digest from a different message
 - For example MD5, SHA (Secure Hash Algorithm)

The keys

- Same problems as with the asymmetrical cryptography
 - How to make sure the person sending you the key is who he claims to be
 - How to make sure the keys are large enough?

- Smaller key sizes
- More complex key generation
- But still faster to compute because of the smaller key sizes
- Can be applied easily to existing digital signaturing algorithms (for example DSA)

- The RSA relies in the difficulty of the factoring of modulus n
- to aviod the factoring the modulus size should be something like 2¹⁰²⁴ or more

- The DSA relies on the difficulty of the discrete log problem in group of intergers
- Find a private key a for a public key a and private key a and a^a mod p
- The size of the modulus is typically something like 2¹⁰²⁴
- The speed depends on the modulus size

- The security of ECDSA relies on the discrete log problem in the group of points on an elliptic curve
- The traditional attacks against DSA doesn't work on these -> smaller key sizes
- The key sizes of RSA and ECDSA

RSA modulus	1024	2048	4096
ECDSA field size	160	211	296

DSA & Elliptic curves

- With DSA we have a pair of integers (r,s)
 - where $x = a^k \mod p$, $r = x \mod q$, $s = k^{-1}(h(m)+ar) \mod q$
 - a generates a subgroup of order q in Z
- With ECDSA we also have (r,s)
 - where (x,y) = kP, $r = x \mod n$, $s = k^{-1}(h(m)+ar) \mod n$
 - P generates a subgroup of order n in the curve
 E(F(q))

- Elliptic curve over Finite Field
 - Let p > 3 be a prime and GF(pⁿ) be a finite field
 - Let x³+ax+b where a and b ∈ F be a cubic polynomial with no multiple roots
 - An elliptic curve E over F is the set of points (x,y) with x,y ∈ F, which satisfy the equation y²=x³+ax+b with an element O "the point of infinity"

Elliptic Curve

Addition law:

- For $P(x_1,y_1) \in E$, $Q = (x_2,y_2) \in E$, then
 - $-P = (x_1, -y_1)$
 - P+Q = (x_3,y_3) where $x_3 = \lambda^2-x_1-x_2$, $y_3 = \lambda(x_1-x_3)-y_1$ where $\lambda = (y_2-y_1)/(x_2-x_1)$, if P≠Q $\lambda = (3x_1^2+a)/2y_1$ if P = Q

- Choose p, a prime, and n, an integer, f(x), an irreducible polynomial over GF(p) of degree n, generating finite field GF(pⁿ) with the defining polynomial f(x), and assume that a is a root of f(x) in GF(pⁿ)
- Generate a curve E over GF(pⁿ)
- Choose a point P = (x,y) on E of order q, which is prime
- Converting function: c(x): $GF(p^n) \rightarrow Z_p^n$, which is given by $c(x) = \sum c_k p^i \in Z_p^n$, $i = \{0,1,...,n-1\}$ for $x = \sum c_k a^i \in GF(p^n)$, $i = \{0,1,...,n-1\}$ and $0 = < c_i < p$

Key:

- Private key d, an integer, is selected randomly as 0 < d < q
- Public key Q, a point on curve E is computed by $Q = dP = (x_d, y_d)$.

Signing

- Generate a key pair (k,R): choose a random number k: 0 < k < q and compute point $R = kP = (x_k,y_k)$.
- Compute r: using the converting function c(x) = r
- Compute s: h(m) = dr + ks mod q, where h is the hashing algorithm
 The pair (r,s) is the signature of m

Verifying

Compute numbers:

```
t = s^{-1} \mod q

t_1 = tdr \mod q

t_2 = h(m)t \mod q
```

Compute the point on E by using private key P and public key Q:

$$t_1P-t_2Q = (x_e, y_e)$$

• Use the converting function for $c(x_e)$ and check if $r = c(x_e)$ mod q. If so, then (r,s) is accepted

- Summary of the elliptic curves
 - Elliptic curve algorithms can be faster if a smaller key size is used
 - Provides the same level of security with smaller key sizes
 - Choosing the parameters is much more difficult but the overhead is more than made up on the smaller key sizes