

Helsinki University of Technology S-38.153 Security of Communication Protocols Mikko.Suominen@hut.fi 15.4.2003

Contents

Introduction

GSM security mechanisms

GSM security concerns

Conclusion

Introduction

- Global System for Mobile communications
 Specified by ETSI
 - Digital cellular communications system
 - □ High mobility (international roaming)

 Voice communication, Short Messaging Service, call waiting, call forwarding, calling line identity, circuit-switched data (packet-switched data with GPRS)

GSM Architecture

Network Databases (1)

- The network subsystem uses the following databases for the authentication and security purposes
 - The HLR database contains all administrative information about each registered user of a GSM network along with the current location of the MS
 - The VLR tracks mobiles that are out of their home network, so that the network will know where to find them

Network Databases (2)

- The EIR contains a list of each MS IMEI allowed on the network
 - White listed Allowed to connect to the network
 - Grey listed Under observation for possible problems
 - Black listed Not allowed to connect to the network
- □ The AUC database contains:
 - IMSI: International Mobile Subscriber Identity
 - TMSI: Temporary Mobile Subscriber Identity
 - LAI: Location Area Identity
 - Ki: Authentication Key

Security Measures in GSM

- PIN code (authentication of SIM = local security measure, network not involved)
- User authentication (performed by network)
- Ciphering of information sent over air interface
- Usage of TMSI (instead of IMSI) over air interface

PIN Code

Personal Identification Number Stored in SIM card Asked when phone is switched on \Box If 3 faulty PIN inputs \rightarrow longer Personal Unblocking Key (PUK) code is asked \Box If 10 faulty PUK inputs \rightarrow SIM card is locked \rightarrow new card from operator

User Authentication

Authentication key (Ki) is never sent over radio interface!

Ciphering in GSM

For each call a new ciphering key (Kc) is generated during authentication!

Summary of Algorithms Used

Usage of TMSI (1)

- IMSI uniquely identifies the subscriber
- Rather than sending IMSI, TMSI is sent
- This prevents the intruder from
 - gaining information on the resources the user is using
 - □ tracing the location of the user
 - matching the user and the transmitted signal

Usage of TMSI (2)

- TMSI is sent to MS after the authentication procedure has taken place
- Mapping of the TMSI to the IMSI is done by the network and is typically handled by the VLR
- IMSI is sent only when necessary, for example
 when the SIM is used for the first time
 when there is data loss at VLR

Security through Obscurity

- Authentication and encryption algorithms were never made public
 - □ Whole security model developed in secret
 - Suspicion that cryptographic algorithms are weak
 - Although never published, ciphering algorithm
 A5 has been reverse engineered!

SIM Wars: Attack of the Clones

- Cloning of SIM cards is possible
 - Extract Ki from SIM by means of side-channel attack
 - □ Can retrieve Ki with as little as 8 adaptively chosen plaintexts within a minute
 - Needs physical access to SIM and equipment that is not found from people's garages (at least at the moment)

Other Concerns

- Only air interface transmission is encrypted
- Ciphering key (Kc) used for encryption is only 54 bits long
- MS is authenticated to the BS, but the BS is not authenticated to the MS → false base stations (man-in-the-middle attack)

Conclusion

- GSM still is a reasonably secure cellular telecommunications system
- However there are some concerns
 - End-to-end security is not provided
 - No open algorithms tested by engineering community
 - □ SIM cloning is a real threat