## PDH Switches

## Switching Technology S38.165

http://www.netlab.hut.fi/opetus/s38165

## PDH switches

- General structure of telecom exchange
- Timing and synchronization
- Dimensioning example


## PDH exchange

- Digital telephone exchanges are called SPC (Stored Program Control) exchanges
- controlled by software, which is stored in a computer or a group of computers (microprocessors)
- programs contain the actual intelligence to perform control functions
- software divided into well-defined blocks - modularity makes the system less complicated to maintain and expand
- Main building blocks
- subscriber interfaces and trunk interfaces
- switch fabric
- switch/call control


## Basic blocks of a PDH exchange



## Switch control

## - Centralized

- all control actions needed to set up/tear down a connection are executed in a central processing unit
- processing work normally shared by a number of processors
- hierarchical or non-hierarchical processor architecture
- Distributed
- control functions are shared by a number of processing units that are more or less independent of one another
- switching device divided into a number of switching parts and each of them has a control processor


## Switch control (cont.)

## Centralized non-hierarchical processor system

Centralized hierarchical processor system


Control units usually doubled or tripled


RP - Regional Processor

## Switch control (cont.)

Distributed control with independent switching parts


## Example construction of a PDH exchange



## Example of call control processing



CCSU - Common Channel Signaling Unit
CM - Central Memory
$\begin{array}{ll}\text { CM } & \text { - Central Memory } \\ \text { LSU - Line Signaling Unit }\end{array}$
M - Marker
Registering Unit
Subscriber Stage Unit - Statistics Unit

## Hierarchical control software

Software systems in the control part:

- signaling and call control
- charging and statistics
- maintenance software



## Switching part

- Main task of switching part is to connect an incoming time-slot to an outgoing one-unit responsible for this function is called a group switch
- Control system assigns incoming and outgoing time-slot, which are reserved by signaling, on associated physical links => need for time and space switching



## Group switch implementations

- Group switch can be based on a space or time switch fabric
- Memory based time switch fabrics are the most common ones
- flexible constructions
- due to advances in IC technology suitable also for large switch fabrics



## Subscriber connections



## Subscriber and trunk interface

## - Subscriber interface

- on-hook/off-hook detection, reception of dialed digits
- check of subscriber line, power supply for subscriber line
- physical signal reception/transmission, A/D-conversion
- concentration
- Trunk interface
- timing and synchronization (bit and octet level) to line/clock signal coming from an exchange of higher level of hierarchy
- frame alignment/frame generation
- multiplexing/demultiplexing

Example of telephone network hierarchy


## Network synchronization

## Need for synchronization

- Today's digital telecom networks are combination of PDH and SDH technologies, i.e. TDM and TDMA utilized
- These techniques require that time and timing in the network can be controlled, e.g., when traffic is added or dropped from a bit stream in an optical fiber or to/from a radio-transmitted signal
- The purpose of network synchronization is to enable the network nodes to operate with the same frequency stability and/or absolute time
- Network synchronism is normally obtained by applying the master-slave timing principle


## Network synchronization

## Methods for network synchronization

- Distribute the clock over special synchronization links - offers best integrity, independent of technological development and architecture of the network
- Distribute the clock by utilizing traffic links
- most frequently used (master-slave network superimposed on the traffic network)
- Use an independent clock in each node
- expensive method, but standard solution in international exchanges
- Use an international navigation system in each node
- GPS (Global Positioning System) deployed increasingly
- independent of technological development and architecture of network
- Combine some of the above methods

Master-slave synchronization over transport network


ITU-T Recommendations G.810, G.811, G.812, G.812, G. 823

## SDH synchronization network reference chain

- As the number of clocks in tandem increases, synchronization signal is increasingly degraded
- To maintain clock quality it is important to specify limit to the number of cascaded clocks and set limit on degradation of the synchronization signal
- Reference chain consists of $K$ SSUs each linked with NSECs
- Provisionally $K$ and $N$ have been set to be $K=10$ and $N=20$ - total number of SECs has been limited to 60



## PDH synchronization reference connection

- End-to-end timing requirements are set for the reference connection
- Link timing errors are additive on the end-to-end connection
- By synchronizing the national network at both ends, timing errors can be reduced compared to totally plesiochronous (separate clock in each switch) operation
- International connections mostly plesiochronous


TC - Tertiary Exchange
ISC - International Switching Center
Digital exchange $\quad \square$ Digital link

## Types of timing variation

- Frequency offset
- steady-state timing difference - causes buffer overflows
- Periodic timing differences
- jitter (periodic variation $>10 \mathrm{~Hz}$ )
- wander (periodic variation $<10 \mathrm{~Hz}$ )
- Random frequency variation cased by
- electronic noise in phase-locked loops of timing devices and recovery systems
- transients caused by switching from one clock source to another
- Timing variation causes
- slips (= loss of a frame or duplication of a frame) in PDH systems
- pointer adjustments in SDH systems => payload jitter
=> data errors


## Visualization of jitter and wander



## Timing variation measures

- Time interval error (TIE)
- difference between the phase of a timing signal and phase of a reference (master clock) timing signal (given in ns)
- Maximum time interval error (MTIE)
- maximum value of TIE during a measurement period
- Maximum relative time interval error (MRTIE)
- underlying frequency offset subtracted from MTIE
- Time deviation (TDEV)
- average standard deviation calculated from TIE for varying window sizes


## Maximum time interval error

- the maximum of peak-to-peak difference in timing signal delay during a measurement period as compared to an ideal timing signal



## MTIE limits for PRC, SSU and SEC

| Clock <br> source | Time-slot <br> interval [ns] | Time-slot <br> interval $[\mathrm{ns}]$ |
| :---: | :---: | :---: |
|  | 25 ns | $0.1<t<83 \mathrm{~s}$ |
| PRC | 0.3 ns | $83<t<1000 \mathrm{~s}$ |
|  | 300 ns | $1000<t<30000 \mathrm{~s}$ |
|  | 0.01 ns | $t>30000 \mathrm{~s}$ |
|  | 25 ns | $0.1<t<2.5 \mathrm{~s}$ |
| SSU | 10 ns | $2.5<t<200 \mathrm{~s}$ |
|  | 2000 ns | $200<t<2000 \mathrm{~s}$ |
|  | $4330^{0.2}+0.01 \mathrm{~ns}$ | $t>2000 \mathrm{~s}$ |
|  | 250 ns | $0.1<t<2.5 \mathrm{~s}$ |
|  | $100 t \mathrm{~ns}$ | $2.5<t<20 \mathrm{~s}$ |
| SEC | 2000 ns | $20<t<2000 \mathrm{~s}$ |
|  | $433 t^{0.2}+0.01 \mathrm{~ns}$ | $t>2000 \mathrm{~s}$ |

ETS 300 462-3

## Occurrence of slips

- Slips occur on connections whose timing differs from the timing signal used by the exchange
- If both ends of a connection are internally synchronized to a PRC signal, theoretically slips occur no more frequently than once in 72 days
- In a reference connection a slip occurs theoretically once in 72/12 = 6 days or if national segments are synchronized once in 720/4 $=18$ days
- Slip requirement on an end-to-end connection is looser:

| Average frequency of slips | Share of time during one year |
| :---: | :---: |
| $\leq 5$ slips / 24h | $98.90 \%$ |
| 5 slips/ 24 h $\ldots .30$ slips/ 1h | $<1 \%$ |
| $\leq 10$ slips / 1h | $<0.1 \%$ |

## Slip calculation example

Show that two networks with single frame buffers and timed from separate PRCs would see a maximum slip rate of one slip every 72 days

## Solution:

- Timing accuracy of a PRC clock is $10^{-11}$
- Let the frequencies of the two ends be $f_{1}$ and $f_{2}$
- In the worst case, these frequencies deviate from the reference clock $f_{o}$ by $10^{-11} \times f_{o}$ and those deviations are to different directions
- Let the frequencies be $f_{1}=\left(1+10^{-11}\right) f_{0}$ and $f_{2}=\left(1-10^{-11}\right) f_{o}$
- Duration of bits in these networks are $T_{1}=1 / f_{1}$ and $T_{2}=1 / f_{2}$


## Slip calculation example (cont.)

## Solution (cont.):

- During one bit interval, the timing difference is $\left|T_{1}-T_{2}\right|$ and after some $N$ bits the difference exceeds a frame length of $125 \mu \mathrm{~s}$ and a slip occurs $=>N\left|T_{1}-\mathrm{T}_{2}\right|=125 \times 10^{-9}$
$\Rightarrow N=125 \times 10^{-9} /\left[\left|\left(1 / \mathrm{f}_{1}-1 / \mathrm{f}_{2}\right)\right|\right]$
- Inserting $f_{1}=\left(1+10^{-11}\right) f_{o}$ and $f_{2}=\left(1-10^{-11}\right) f_{o}$ into the above equation, we get $\Rightarrow N=125 \times 10^{-9} \mathrm{f}_{\mathrm{o}}\left(1-10^{-22}\right) /\left(2 \times 10^{-11}\right)$
- Multiplying $N$ by the duration $\left(\mathrm{T}_{\mathrm{b}}\right)$ of one bit, we get the time ( $\mathrm{T}_{\text {slip }}$ ) between slips
- In case of E1 links, $f_{o}=2.048 \times 10^{6} / \mathrm{s}$ and $T_{b}=488 \mathrm{~ns}$. Dividing the obtained $\mathrm{T}_{\text {slip }}$ by $60(\mathrm{~s})$, then by $60(\mathrm{~min})$ and finally by 24 (h) we get the average time interval between successive slips to be 72.3 days


## Synchronization of a switch

## Synchronization sub-system in an exchange

- Supports both plesiochronous and slave mode
- Clock accuracy is chosen based on the location of the exchange in the synchronization hierarchy
- accuracy decreases towards the leaves of the synchronization tree
- Synchronizes itself automatically to several PCM signals and chooses the most suitable of them (primary, secondary, etc.)
- Implements a timing control algorithm to eliminate - instantaneous timing differences caused by the transmission network (e.g. switchovers - automatic replacement of faulty equipment with redundant ones)
- jitter
- Follows smoothly incoming synchronization signal
© P. Raatikainen Switching Technology / 2003 8-29


## Synchronization of a switch (cont.)

## Exchange follows the synchronization signal

- Relative error used to set requirements
- maximum relative time interval error MRTIE $\leq 1000$ ns ( $S \geq 100 \mathrm{~s}$ )
- Requirement implies how well the exchange must follow the synchronization signal when the input is practically error free
- When none of the synchronization inputs is good enough, the exchange clock automatically switches over to plesiochronous operation
- In plesiochronous mode MRTIE $\leq\left(a S+0.5 b S^{2}+c\right) \mathrm{ns}$
- Timing system monitors all incoming clock signals and when a quality signal is detected, the system switches over back to slave mode (either manually by an operator command or automatically)


## Stability of an exchange clock

- Clock stability is measured by aging (=b)
- temperature stabilized aging in the order of $n \times 10^{-10} /$ day
- MRTIE $\leq\left(a S+0.5 b S^{2}+c\right) n s$
- S = measurement period
- a = accuracy of the initial setting of the clock
- b = clock stability (measured by aging)
- $\mathrm{c}=$ constant

|  | Transit node clock | Local node clock |
| :---: | :---: | :---: |
| $\boldsymbol{a}$ | $0.5-$ corresponds to an initial <br> frequency shift of $5 \times 10^{-10}$ | $10.0-$ corresponds to an <br> initial frequency shift of $1 \times 10^{-8}$ |
| $\boldsymbol{b}$ | $1.16 \times 10^{-5}-$ corresponds <br> to aging of $10^{-9} /$ days | $2.3 \times 10^{-4}-$ corresponds <br> to aging of $2 \times 10^{-8}$ |
| $\boldsymbol{c}$ | 1000 | 1000 |
| © P. Raatikainen | $8-31$ |  |

## MRTIE in an exchange

 (plesiochronous mode)

Duration of a time-slot in a PCM-signal is $3.9 \mu \mathrm{~s}$ and duration of a bit is 488 ns

## Example of SRAM based PDH switch fabric



## Example of SRAM based PDH switch fabric (cont.)

## Memory size and speed requirement:

- Switch memory (SM) and control memory (CM) both are single chip solutions
- Size of both SM and $\mathrm{CM} \geq 64 \times 32$ octets $=2048$ octets
- Number of SM write and read cycles during a frame interval ( $125 \mu \mathrm{~s}$ ) is $2 \times 64 \times 32=4096$
- Access cycle of SM should be $\leq 125 \mu \mathrm{~s} / 4096=30,5 \mathrm{~ns}$
- Number of CM write and read cycles during a frame interval ( $125 \mu \mathrm{~s}$ ) is $1 \times 64 \times 32=2048$
- Access cycle of CM should be $\leq 125 \mu \mathrm{~s} / 2048=61 \mathrm{~ns}$


## PDH bit rates and related bit/octet times

| Hierarchy <br> level | Time-slot <br> interval [ns] | Bit interval <br> $[\mathrm{ns}]$ |
| :---: | :---: | :---: |
| E1/2M | 3906 | 488 |
| E2/8M | 947 | 118 |
| E3/34M | 233 | 29 |
| E4/140M | 57.4 | 7.2 |

- When time-slots turn into parallel form (8 bits in parallel) memory speed requirement decreased by a factor of 8
- Present day memory technology enables up to 256 PDH E1 signals to be written to and read from a SRAM memory on wire speed


## Properties of full matrix switches

## Pros

- strict-sense non-blocking
- no path search - a connection can always be written into the control memory if requested output is idle
- multi-cast capability
- constant delay
- multi-slot connections possible


## Cons

- switch and control memory both increase in square of the number of input/outputs
- broadband - required memory speed may not be available


## Make full use of available memory speed

- At the time of design, select components that - give adequate performance - will stay on the market long enough
- are not too expensive (often price limits the use of the fastest components)
- To make full use of available memory speed, buses must be fast enough
- When increasing required memory speed, practical bus length decreases (proportional to inverse of speed)



## Power consumption - avoid heating problem

- Power consumption of an output gate is a function of - inputs connected to it (increased number of inputs => increased power consumption)
- bit rate/clock frequency (higher bit rate => increased power consumption - bus length (long buses inside switch fabric => increased power consumption and decreased fan-out)
- Increase in power consumption => heating problem
- Power consumption and heating problem can be reduced, e.g. by using lower voltage components (higher resolution receivers)





## Logical structure of a full matrix switch



## Example of a matrix switch (DX200)



## Example of a matrix switch (cont.)

- S/P (Serial/Parallel conversion) - incoming time-slots are turned into parallel form to reduce the speed on internal buses
- P/S (Parallel/Serial conversion) - parallel form output signals converted back to serial form
- 64 PCM S/P-P/S pairs implemented on one card, which is practical because PCMs are bi-directional
- One switch block can serve max 4 S/P-P/S pairs - which is chosen based on required capacity (64, 128, 192 or 256 E1/PCMs)
- One S/P+P/S pair feeds max 8 parallel switch blocks - chosen based on the required capacity in the installation ( $n$ * 256 E1/PCM's)
- Max size of the example DX200-system fabric is 2048 E1/PCM's
- Currently, a bigger matrix ( $8 \mathrm{~K} \mathrm{E1/PCM's)} \mathrm{is} \mathrm{available}$, SRAMs are needed, but principle is similar


## Example of a matrix switch (cont.)

- A time-slot is forwarded from an S/P to all parallel switch blocks and in each switch block it is written to all SMs along the vertical bus
- A single time-slot replicated into max $4 \times 8=32$ locations
- Data in CMs used to store a time-slot in correct positions in SMs
- CM also includes data to read a correct time-slot to be forwarded to each output time-slot on each output E1 link
- CM includes a 16-bit pointer to a time-slot to be read
- 2 bits of CM content point to an SM chip and
$-5+6=11$ bits point to a memory location on an SM chip
- remaining 3 bits point to (source) switch block


## Example of a matrix switch (cont.)

- Number of time-slots to be switched during a frame (125 $\mu \mathrm{s}$ ): - $8 \times 4 \times 64 \times 32=65536$ time-slots (= 64 kbytes)
- Each time-slot stored in 4 SMs in each of the 8 switch blocks => max size of switch memory $8 \times 4 \times 65536=2097152$ (= 2 Mbytes)
- Every 32nd memory location is read from SM in a max size switch => average memory speed requirement $<31 \mathrm{~ns}$ (less than the worst case requirement $64 \times 32$ write and $64 \times 32$ read operations during a $125 \mu$ s period)
- Control memory is composed of $4 \times 4$ control memory banks in each of the 8 switch blocks and each memory bank includes 2.048 kwords (word= 2 bytes) for write and 2.048 kwords for read control, i.e. $\max \mathrm{CM}$ size is $8 \times 4 \times 4 \times 8 \mathrm{kbyte}=1048576$ bytes $(=1$ Mbytes)


