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Static networks

• Static network (= broadcast-and-select network ) is a  purely 
optical shared medium network

• passive splitting and combining nodes are interconnected by fibers to 
provide static connectivity among some or all OTs and ORs

• OTs broadcast and ORs select

• Broadcast star network is an example of such a static network
• star coupler combines all signals and broadcasts them to all ORs

- static optical multi-cast paths from any station to the set of all stations
- no wavelength selectivity at the network node

• optical connection is created by tuning the source OT and/or destination 
OR to the same wavelength

• two OTs must operate at different wavelengths (to avoid interference)
- this is called the distinct channel assignment (DCA) constraint 

• however, two ORs can be tuned to the same wavelength
- by this way, optical multi-cast connections are created
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Realization of logical connectivity

• Methods to realize full point-to-point logical connectivity in a 
broadcast star with N nodes:

• WDM/WDMA
- a whole λλλλ-channel allocated for each LC
- N(N-1) wavelengths needed (one for each LC)
- N-1 transceivers needed in each NAS

• TDM/TDMA
- 1/[N(N-1)] of a λλλλ-channel allocated for each LC
- 1 wavelength needed
- 1 transceiver needed in each NAS

• TDM/T-WDMA
- 1/(N-1) of a λλλλ-channel allocated for each LC
- N wavelengths needed (one for each OT)
- 1 transceiver needed in each NAS, e.g. fixed OT and  tunable OR 
(FT-TR), or tunable OT and fixed OR (TT- FR)
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Broadcast star using WDM/WDMA
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[a, b] = logical connection from port on station a to one on station b
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Broadcast star using TDM/TDMA
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Effect of propagation delay on 
TDM/TDMA

A TDM/TDMA schedule
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Broadcast star using TDM/T-WDMA in 
FT-TR mode
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Broadcast star using TDM/T-WDMA in 
TT-FR mode
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Channel allocation schedules for circuit 
switching
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Channel allocation schedule (CAS) should be
- realizable = only one LC per each OT and time-slot
- collision-free = only one LC per each λ and time-slot  
- conflict-free = only one LC per each OR and time-slot 
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• Fixed capacity allocation, produced by periodic frames, is well 
adapted to stream-type traffic. However, in the case of bursty packet 
traffic this approach may produce a very poor performance

• By implementing packet switching in the optical layer , it is 
possible to maintain a very large number of LCs simultaneously 
using dynamic capacity allocation
- packets are processed in TPs/RPs of the NASs (but not in ONNs)
- TPs can schedule packets based on instantaneous demand 
- as before, broadcast star is used as a shared medium
- control of this shared optical medium 
requires a Medium Access Control 
(MAC) protocol 

Packet switching in the optical layer
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Additional comments on static networks

• The broadcast-and-select principle cannot be scaled to large 
networks for three reasons:

– Spectrum use: Since all transmissions share the same fibers, there 
is no possibility of optical spectrum reuse => the required spectrum 
typically grows at least proportionally to the number of transmitting 
stations

– Protocol complexity: Synchronization problems, signaling 
overhead, time delays, and processing complexity all increase 
rapidly with the number of stations and with the number of LCs.

– Survivability: There are no alternate routes in case of a failure. 
Furthermore, a failure at the star coupler can bring the whole 
network down.

– For these reasons, a practical limit on the number of stations in a 
broadcast star is approximately 100
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Wavelength Routed Networks (WRN)

• Wavelength routed network (WRN ) is a purely optical network

– each λ-channel can be recognized in the ONNs (= wavelength 
selectivity) and routed individually

– ONNs are typically wavelength selective cross-connects (WSXC)

• network is dynamic (allowing switched connections)
• a static WRN (allowing only dedicated connections) can be built up 

using static wavelength routers

• All optical paths and connections are point-to-point
– each point-to-point LC corresponds to a point-to-point OC

– full point-to-point logical/optical connectivity among N stations requires 
N-1 transceivers in each NAS 

– multipoint logical connectivity only possible by several point-to-point 
optical connections using WDM/WDMA
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Static wavelength routed star

• Full point-to-point logical/optical connectivity in a static 
wavelength routed star with N nodes can be realized 
by WDM/WDMA

– a whole λ-channel allocated for each LC

– N-1 wavelengths needed - spectrum reuse factor is 
N  ( = N(N-1) optical connections / N-1 wavelengths)

– N-1 transceivers needed in each NAS
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Static wavelength routed star using 
WDM/WDMA
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Routing and channel assignment

• Consider a WRN equipped with WSXCs (or wavelength routers)
– no wavelength conversion possible

• Establishment of an optical connection requires
– channel assignment
– routing

• Channel assignment (executed in the λ-channel sublayer) involves 
– allocation of an available wavelength to the connection and 
– tuning of the transmitting and receiving station to the assigned

wavelength

• Routing (executed in the optical path sublayer) involves 

– determination of a suitable optical path for the assigned λ-channel

– setting-up of the switches in the network nodes to establish that path
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Channel assignment constraints

• Following two channel assignment constraints apply to WRNs
• wavelength continuity: wavelength of each optical connection 

remains the same on all links it traverses from source to destination
• wavelength continuity is unique to transparent optical networks,

making routing and wavelength assignment a more challenging 
task than the related problem in conventional networks

• distinct channel assignment (DCA): all optical 
connections sharing a common fiber must be 
assigned distinct λ-channels (i.e. distinct wavelengths)
- this applies to access links as well as inter-nodal links
- although DCA is necessary to ensure distinguishability
of signals on the same fiber, it is possible (and generally 
advantageous) to reuse the same wavelength on 
fiber-disjoint paths
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• Routing and channel assignment (RCA) is a fundamental control 
problem in large optical networks

– Generally, the RCA problem for dedicated connections can be treated 
off-line  => computationally intensive optimization techniques are 
appropriate

– On the other hand, RCA decisions for switched connections must be 
made rapidly, and hence suboptimal heuristics must normally be used
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Example bi-directional ring with 
elementary NASs

• Consider a bi-directional ring of 5 nodes and 
stations with single access fiber pairs

• Full point-to-point logical/optical connectivity 
requires 
- 4 wavelengths => spectrum reuse factor is 
20/4 = 5
- 4 transceivers in each NAS 

RCA

2L 3L 4R 1R --
4L 2R 1R -- 3L
3R 4R -- 2L 1L
1R -- 3L 4L 2R
-- 1L 2L 3R 4R
1 2 3 4 5

5
4
3
2
11 523

12

Fiber from ONN1 to ONN2

1

2

3 4

5L R

physical topology

λλλλ1

λλλλ2

λλλλ3

λλλλ4



L12 - 21P. Raatikainen Switching Technology  / 2004

Example bi-directional ring with
non-blocking NASs

• Consider a bi-directional ring of 5 nodes and 
stations with two access fiber pairs

• Full point-to-point logical/optical connectivity 
requires
- 3 wavelengths => spectrum reuse factor is 
20/3 = 6.67
- 4 transceivers in each NAS
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Example mesh network with elementary 
NASs

• Consider a mesh network of 5 nodes and 
stations with single access fiber pairs

• Full point-to-point logical/optical 
connectivity requires 

– 4 wavelengths
=> spectrum reuse factor is 20/4 = 5

– 4 transceivers in each NAS
– despite the richer physical topology, 

no difference with the corresponding 
bi-directional ring (thus, the access 
fibers are the bottleneck)
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Example mesh network with 
non-blocking NASs

• Consider a mesh network of 5 nodes and 
stations with three/four access fiber pairs

• Full point-to-point logical/optical 
connectivity requires 

– only 2 wavelengths 
=> spectrum reuse factor is 20/2 = 10

– 4 transceivers in each NAS
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Linear Lightwave Networks (LLN)

• Linear lightwave network (LLN ) is a purely optical network
– nodes perform (only) strictly linear operations on optical signals

• This class includes 
– both static and wavelength routed networks
– but also something more

• The most general type of LLN has waveband selective LDC nodes
– LDC performs controllable optical signal dividing, routing and combining
– these functions are required to support multipoint optical connectivity

• Waveband selectivity in nodes means that 

– optical path layer routes signals as bundles that contain all λ-channels 
within one waveband

• Thus, all layers of connectivity and their interrelations must be 
examined carefully
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Routing and channel assignment 
constraints

• Two constraints of WRNs need also to be satisfied by LLNs 
• Wavelength continuity: wavelength of each optical connection remains 

the same on all the links it traverses from source to destination
• Distinct channel assignment (DCA): all optical connections sharing a 

common fiber must be assigned distinct λ-channels

• Additionally, the following two routing constraints apply to LLNs
• Inseparability: channels combined on a single fiber and located within 

the same waveband cannot be separated within the network
- this is a consequence of the fact that the LDCs operate on the 
aggregate power carried within each waveband

• Distinct source combining (DSC): only signals from distinct sources 
are allowed to be combined on the same fiber
- DSC condition forbids a signal from splitting, taking multiple paths, and then 
recombining with itself
- otherwise, combined signals would interfere with each other
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Inseparability (cont.)

• Two connections (that use signals S1 and S2) are in the same 
waveband

• Power of S1 and S2 combined on link a
=> to avoid interference connections should use different wavelengths 
or different time-slots on a common wavelength

• At node B both connections routed to towards their destinations

• Since S1 and S2 are in the same waveband both signals are 
multicasted towards destination 1’ and 2’
=> both signals branch out from their original paths (to fortuitous paths)
=> waste of fiber resources
=> waste of signal power

• Good design principle to avoid fortuitous paths
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Two violations of DSC
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=>  Garbling of information
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Inadvertent violation of DSC
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• Correct but poor routing decisions may produce inadvertent violation of DSC constraint
• Due to inseparability S3 carries S1+ S2 with it 

=> all three connections in the same waveband  on different λs (on link f) 
=> S1 information (at destination 1’) garbled 

• Problem avoided if S3 in different waveband
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Two other ways to avoid DSC violations
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Power distribution

• In a LDC it is possible to specify combining and dividing ratios
• ratios determine how power from sources is distributed to destinations
• combining and dividing ratios can be set differently for each waveband

• How should these ratios be chosen?

• The objective could be 
• to split each source’s power equally among all destinations it reaches
• to combine equally all sources arriving at the same destination

• Resultant end-to-end power transfer coefficients are independent of 
• routing paths through the network
• number of nodes they traverse
• order in which signals are combined and split

• Coefficients depend only on 
• number of destinations for each source
• number of sources reaching each destination
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Illustration of power distribution
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Multipoint subnets in LLNs

• Attempt to set up several point-to-point optical connections within a 
common waveband leads to unintentional creation of multipoint paths
=> complications in routing, channel assignment and power distribution

• On the other hand, waveband routing leads to more efficient use of 
the optical spectrum

• In addition, the multipoint optical path capability is useful when 
creating intentional multipoint optical connections

– LLNs can deliver a high degree of logical connectivity with minimal 
optical hardware in the access stations

– this is one of the fundamental advantages of LLNs over WRNs

• Multipoint optical connections can be utilized when creating a full 
logical connectivity among specified clusters of stations within a 
larger network  => such fully connected clusters are called 
multipoint subnets (MPS)
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Example - seven stations on a mesh

• Consider a network containing seven 
stations interconnected on a LLN with 
a mesh physical topology and bi-
directional fiber links
- notation for fiber labeling:  a and a´ form 
a fiber pair with opposite directions

• Set of stations {2,3,4} should be 
interconnected to create a MPS with 
full logical connectivity

• This can be achieved, e.g. by creating 
an optical path on a single 
waveband in the form of a tree joining 
the three stations (embedded 
broadcast star )
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Realization of MPS by a tree embedded 
in mesh
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Seven-station example

• Assume : 
– non-blocking access stations
– each transmitter runs at a bit rate of R0

• Physical topologies (PT): 
– bi-directional ring
– mesh
– multistar of seven physical stars

• Logical topologies (LT):
– fully connected (point-to-point logical topology with 42 edges)  realized 

by using WRN
– fully shared (hypernet logical topology with a single hyperedge) 

realized using a broadcast-and-select network (LLN of a single MPS)

– partially shared (hypernet of seven hyperedges) realized by using LLN
of seven MPSs
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Physical topologies
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Fully connected LT - WRN realizations

• Ring PT:
– 6 λs with spectrum reuse factor of 42/6 = 7 

=> RCA?
– 6 transceivers in each NAS  
⇒ network capacity = 7*6 = 42 R0

• Mesh PT:
– 4 λs with spectrum reuse factor of 42/4 = 10.5

=> RCA?
– 6 transceivers in each NAS
⇒ network capacity = 7*6 = 42 R0

• Multistar PT:
– 2 λs with spectrum reuse factor of 42/2 = 21

=> RCA?
– 6 transceivers in each NAS
⇒ network capacity = 7*6 = 42 R0
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Fully shared LT - Broadcast and select 
network realizations

• Any PT

• WDM/WDMA:

– 42 λs with spectrum reuse factor of 1

– 6 transceivers in each NAS

⇒ network capacity = 7*6 = 42 R0

• TDM/T-WDMA in FT-TR mode:

– 7 λs with spectrum reuse factor of 1

– 1 transceiver in each NAS

⇒ network capacity = 7*1 = 7 R0

• TDM/TDMA:

– 1 λ with spectrum reuse factor of 1

– 1 transceiver in each NAS
⇒ network capacity = 7*1/7 = 1 R0
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Partially shared LT - LLN realizations

• Note : Full logical connectivity among all stations

• Mesh PT using TDM/T-WDMA in FT-TR mode:
– 2 wavebands with spectrum reuse factor of 

7/2 = 3.5  =>  RCA?

– 3 λs per waveband
– 3 transceivers in each NAS
⇒ network capacity = 7*3 = 21 R0

• Multistar PT using TDM/T-WDMA in FT-TR 
mode:

– 1 waveband with spectrum reuse factor of 7/1 = 7
=> RCA?

– 3 λs per waveband
– 3 transceivers in each NAS
⇒ network capacity = 7*3 = 21 R0 LCH
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Contents

• Static networks
• Wavelength Routed Networks (WRN)
• Linear Lightwave Networks (LLN)
• Logically Routed Networks (LRN)
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Logically Routed Networks (LRN)

• For small networks, high logical connectivity is reasonably achieved 
by purely optical networks. However, when moving to larger networks, 
the transparent optical approach soon reaches its limits.

• For example, to achieve full logical connectivity among 22 stations on 
a bi-directional ring using wavelength routed point-to-point optical 
connections 21 transceivers are needed in each NAS and totally 61 
wavelengths. Economically and technologically, this is well beyond 
current capabilities.
=>  we must turn to electronics (i.e. logically routed networks)

• Logically routed network (LRN) is a hybrid optical network
– which performs logical switching (by logical switching nodes

(LSN)) on top of a transparent optical network

– LSNs create an extra layer of connectivity between the end 
systems and NASs
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Difference between logical connections 
in purely optical network and LRN 

ONN

NAS

ESPurely optical network:
• End systems connect directly 

to external ports of NAS
• Transport of data between a 

pair of end systems is 
supported by logical 
connections originating and 
terminating at corresponding 
NAS ports

NAS NAS

NAS NAS

Example LCG
ONN

LSN

NAS

ESLogically routing network (LRN):
• Logically switching nodes (LSN) 

form an extra layer of 
connectivity between end 
system and NAS 
=> ES accesses logical network 
through LSN and LSN accesses 
transparent optical network 
through NAS

• Logical connections formed 
between LSNs

LSN

LSNLSN

LSN

Example LCG

ES = End System
LSN = Logical Switching Node
NAS = Network Access Node
ONN = Optical Network Node
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Two approaches to create full 
connectivity

• Multihop networks based on point-to-point logical 
topologies

– realized by WRNs

• Hypernets based on multipoint logical topologies
– realized by LLNs
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Point-to-point logical topologies

• In a point-to-point logical topology
– a hop corresponds to a logical link between two LSNs
– maximum throughput is inversely proportional to the average hop count

• One of the objectives of using logical switching on top of a 
transparent optical network is 

– to reduce cost of station equipment (by reducing the number of optical 
transceivers and complexity of optics) while maintaining high network 
performance

• Thus, we are interested in logical topologies that 
– achieve a small average number of logical hops at a low cost (i.e., small 

node degree and simple optical components)

• An example is a ShuffleNet
– for example, an eight-node ShuffleNet has 16 logical links and an 

average hop count of 2 (if uniform traffic is assumed)
– these networks are scalable to large sizes by adding stages and/or 

increasing the degree of the nodes
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Eight-node ShuffleNet

logical topology
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• Bi-directional ring WRN with  elementary NASs

– 2 λs with spectrum reuse factor of 16/2 = 8

– 2 transceivers in each NAS
– average hop count = 2
⇒ network cap. = 8*2/2 = 8 R0

RCA
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ShuffleNet embedded in a bi-directional 
ring WRN
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Note: station labeling!
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Details of a ShuffleNet node
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Multipoint logical topologies

• High connectivity may be maintained in transparent optical networks 
while economizing on optical resource utilization through the use of 
multipoint connections

• These ideas are even more potent when combined with logical 
switching

• For example, a ShuffleNet may be modified to a Shuffle Hypernet
– an 8-node Shuffle Hypernet has 4 hyperarcs
– each hyperarc presents a directed MPS that contains 2 transmitting and 

2 receiving stations
– an embedded directed broadcast star is created to support each MPS
– for a directed star, a (physical) tree is found joining all stations in both the 

transmitting and receiving sets of the MPS
– any node on the tree can be chosen as a root
– LDCs on the tree are set to create optical paths from all stations in the 

transmitting set to the root node, and paths from the root to all receiving 
stations
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Eight-node Shuffle Hypernet
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Note: station and fiber labeling!
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Shuffle Hypernet embedded in a bi-
directional ring LLN

• Bi-directional ring LLN with  elementary 
NASs  using TDM/T-WDMA in FT-TR mode

– 1 waveband with spectrum reuse factor 
of 4/1 = 4

– 2 λs per waveband
– 1 transceiver in each NAS
⇒ network cap. = 8*1/2 = 4 R0
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Details of node in Shuffle Hypernet
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Contents

• Static networks
• Wavelength Routed Networks (WRN)
• Linear Lightwave Networks (LLN)
• Logically Routed Networks (LRN)

– Virtual connections: an ATM example
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Virtual connections - an ATM example

• Recall the problem of providing full connectivity among five locations

– suppose each location contains a number of end systems that 
access the network through an ATM switch. The interconnected 
switches form a transport network of  5*4 = 20 VPs.

• The following five designs are now examined and compared:
– Stand-alone ATM star
– Stand-alone ATM bi-directional ring
– ATM over a network of SONET cross-connects
– ATM over a WRN
– ATM over a LLN

• Traffic demand: each VP requires 600 Mbits/s (≈ STM-4/STS-12)

• Optical resources:   λ-channels and transceivers run at the rate of

2.4 Gbits/s (≈ STM-16/STS-48)
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Stand-alone ATM networks
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Embedded ATM networks
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Case 1 - Stand-alone ATM star

• Fiber links are connected directly to ports on ATM switches creating a point-
to-point optical connection for each fiber

– each link carries 4 VPs in each direction ⇒ each optical connection needs 2.4 
Gbits/s, which can be accommodated by using a single λ-channel

– one optical transceiver is needed to terminate each end of a link, for a total of 10 
transceivers in the network

• Processing load is unequal:
– end nodes process their own 8 VPs carrying 4.8 Gbits/s

– center node 6 processes all 20 VPs carrying 12.0 Gbits/s ⇒ bottleneck

• Inefficient utilization of fibers, because 

– even though only one λ-channel is used, the total bandwidth of each fiber is 
dedicated to this system

• Poor survivability, since 
– if any link is cut, network is cut in two
– if node 6 fails, the network is completely destroyed
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Case 2 - Stand-alone ATM bi-directional 
ring

• Fiber links are connected directly to ports on ATM switches, creating a point-
to-point optical connection for each fiber

– assuming shortest path routing, each link carries 3 VPs in each direction 
⇒ each optical connection needs 1.8 Gbits/s, which can be 
accommodated using a single λ-channel (leaving 25% spare capacity)

– 1 optical transceiver is needed to terminate each end of a link, for a total 
of 10 transceivers in the network

• Equal processing load:
– each ATM node processes its own 8 VPs and 2 additional transit VPs 

carrying an aggregate traffic of 6.0 Gbits/s
• Thus, 

– no processing bottleneck 
– the same problem with optical spectrum allocation as in case 1 
– but better survivability, since network can recover from any single link cut 

or node failure by rerouting the traffic
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Case 3 - ATM embedded in DCS network

• ATM end nodes access DCSs through 4 electronic ports

• Fiber links are now connected to ports on DCSs, creating a point-to-point 
optical connection for each fiber

– each link carries 4 VPs in each direction => each optical connection 
needs 2.4 Gbits/s, which can be accommodated using a single λ-channel

– again, 1 optical transceiver is needed to terminate each end of a link
• Processing load is lighter

– ATM nodes process their own 8 VPs carrying 4.8 Gbits/s 
– but it is much simpler to perform VP cross-connect functions at the STM-

4/STS-12 level than at the ATM cell level (as was done in case 1)
– a trade-off must be found between optical spectrum utilization and costs

– the more λ-channels on each fiber (to carry “background” traffic), the 
more (expensive) transceivers are needed

• Survivability and reconfigurability are good 
– since alternate paths and additional bandwidth exist in the DCS network
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Case 4 - ATM embedded in a WRN

• DCSs are now replaced by optical nodes containing WSXCs
• Each ATM end node is connected electronically to a NAS

• Each VP in the virtual topology must be supported by 

– a point-to-point optical connection occupying one λ-channel

– 4 tranceivers are needed in each NAS (and totally 20 transceivers)
– however, no tranceivers are needed in the network nodes

• With an optimal routing and wavelength assignment,

– the 20 VPs can be carried using 4 wavelengths (= 800 GHz)
• Processing load is very light 

– due to optical switching (without optoelectronic conversion at each node)

– Note: ATM nodes still process their own 8 VPs carrying 4.8 Gbits/s
• As in case 3, survivability and reconfigurability are good

– since alternate paths and additional bandwidth exist in the underlying 
WRN
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Case 5 - ATM embedded in an LLN

• WSXCs are now replaced by LDCs

• A single waveband is assigned to the ATM network, and the LDCs are set to 
create an embedded tree (MPS) on that waveband

– the 20 VPs are supported by a single hyperedge in the logical topology

– since each λ-channel can carry 4 VPs, 5 λ-channels are needed totally, 
all in the same waveband (= 200 GHz)

– only 1 transceiver is needed in each NAS (and totally 5 transceivers) 
using TDM/T-WDMA in FT-TR mode

• Processing load is again very light 
– due to optical switching (without optoelectronic conversion at each node)
– Note: ATM nodes still process their own 8 VPs carrying 4.8 Gbits/s 

• As in cases 3 and 4, survivability and reconfigurability are good
– since alternate paths and additional bandwidth exist in the underlying LLN
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Comparison of ATM network realizations

Case

Optical
spectrum

usage

Number of
optical

transceivers

Node
processing

load Others

1
2
3
4
5

Very high
Very high
Lowest
Medium
Low

10
10
10
20
5

Very high
High
Medium
Very low
Very low

Poor survivability
-
High DCS
-
Rapid tunability 
required, optical 
multi-cast possible

Case 1 - Stand-alone ATM star
Case 2 - Stand-alone ATM bi-directional ring
Case 3 - ATM embedded in DCS network
Case 4 - ATM embedded in WRN
Case 5 - ATM embedded in LLN


