Switching Technology S38.165

Pertti Raatikainen, research professor
VTT Information Technology
pertti.raatikainen@vtt.fi

General

- Lecturer:

Pertti Raatikainen, research professor /VTT email: pertti.raatikainen@vtt.fi

- Exercises:

Kari Seppảnen, snr. research scientist /VTT email: kari.seppänen@vtt.fi

- Information:
http://www.netlab.hut.fi/opetus/s38165

Goals of the course

- Understand what switching is about
- Understand the basic structure and functions of a switching system
- Understand the role of a switching system in a transport network
- Understand how a switching system works
- Understand technology related to switching
- Understand how conventional circuit switching is related to packet switching

Course outline

- Introduction to switching
- switching in general
- switching modes
- transport and switching
- Switch fabrics
- basics of fabric architectures
- fabric structures
- path search, self-routing and sorting

Course outline

- Switch implementations
- PDH switches
- ATM switches
- routers
- Optical switching
- basics of WDM technology
- components for optical switching
- optical switching concepts

Course requirements

- Preliminary information
- S-38.188 Tietoliikenneverkot or S-72.423 Telecommunication Systems (or a corresponding course)
- 13 lectures (á 3 hours) and 7 exercises (á 2 hours)
- Calculus exercises
- Grating
- Calculus 0 to 6 bonus points - valid in exams in 2004
- Examination, max 30 points

Course material

- Lecture notes
- Understanding Telecommunications 1, Ericsson \& Telia, Studentlitteratur, 2001, ISBN 91-44-00212-2, Chapters 2-4.
- J. Hui: Switching and traffic theory for integrated broadband networks, Kluwer Academic Publ., 1990, ISBN 0-7923-9061-X, Chapters 1-6.
- H. J. Chao, C. H. Lam and E. Oki: Broadband Packet Switching technologies - A Practical Guide to ATM Switches and IP routers, John Wiley \& Sons, 2001, ISBN 0-471-00454-5.
- T.E. Stern and K. Bala: Multiwavelength Optical Networks: A Layered Approach, Addison-Wesley, 1999, ISBN 0-201-30967-X.

Additional reading

- A. Pattavina: Switching Theory - Architecture and Performance in Broadband ATM Networks, John Wiley \& Sons (Chichester), 1998, IBSN 0-471-96338-0, Chapters 2-4.
- R. Ramaswami and K. Sivarajan, Optical Networks, A Practical Perspective, Morgan Kaufman Publ., 2nd Ed., 2002, ISBN 1-55860-655-6.

Introduction to switching

Switching Technology $\mathbf{S 3 8 . 1 6 5}$ http://www.netlab.hut.fi/opetus/s38165

Introduction to switching

- Switching in general
- Switching modes
- Transport and switching

Switching in general

ITU-T specification for switching:

"The establishing, on-demand, of an individual connection from a desired inlet to a desired outlet within a set of inlets and outlets for as long as is required for the transfer of information."
inlet/outlet = a line or a channel

Switching in general (cont.)

- Switching implies directing of information flows in communications networks based on known rules
- Switching takes place in specialized network nodes
- Data switched on bit, octet, frame or packet level
- Size of a switched data unit is variable or fixed

Why switching?

- Switches allow reduction in overall network cost by reducing number and/or cost of transmission links required to enable a given user population to communicate
- Limited number of physical connections implies need for sharing of transport resources, which means
- better utilization of transport capacity
- use of switching
- Switching systems are central components in communications networks

Full connectivity between hosts

Switching network to connect hosts

Hierarchy of switching networks

Sharing of link capacity

Space to be divided:

- physical cable or twisted pair
- frequency
- light wave

Sharing of link capacity (cont.)

Main building blocks of a switch

Heterogeneity by switching

- Switching systems allow heterogeneity among terminals
- terminals of different processing and transmission speeds supported
- terminals may implement different sets of functionality
- and heterogeneity among transmission links by providing a variety of interface types
- data rates can vary
- different link layer framing applied
- optical and electrical interfaces
- variable line coding

Basic types of witching networks

- Statically switched networks
- connections established for longer periods of time (typically for months or years)
- management system used for connection manipulation
- Dynamically switched networks
- connections established for short periods of time (typically from seconds to tens of minutes)
- active signaling needed to manipulate connections
- Routing networks
- no connections established - no signaling
- each data unit routed individually through a network
- routing decision made dynamically or statically

Development of switching technologies

Source: Understanding Telecommunications 1, Ericsson \& Telia, Studentlitteratur, 2001.

Development of switching tech. (cont.)

- Manual systems
- in the infancy of telephony, exchanges were built up with manually operated switching equipment (the first one in 1878 in New Haven, USA)
- Electromechanical systems
- manual exchanges were replaced by automated electromechanical switching systems
- a patent for automated telephone exchange in 1889 (Almon B. Strowger)
- step-by-step selector controlled directly by dial of a telephone set
- developed later in the direction of register-controlled system in which number information is first received and analyzed in a register - the register is used to select alternative switching paths (e.g. 500 line selector in 1923 and crossbar system in 1937)
- more efficient routing of traffic through transmission network
- increased traffic capacity at lower cost

Development of switching tech. (cont.)

- Computer-controlled systems
- FDM was developed round 1910, but implemented in 1950's (ca. 1000 channels transferred in a coaxial cable)
- PCM based digital multiplexing introduce in 1970's - transmission quality improved - costs reduced further when digital group switches were combined with digital transmission systems
- computer control became necessary - the first computer controlled exchange put into service in 1960 (in USA)
- strong growth of data traffic resulted in development of separate data networks and switches - advent of packet switching (sorting, routing and buffering)
- N-ISDN network combined telephone exchange and packet data switches
- ATM based cell switching formed basis for B-ISDN
- next step is to use optical switching with electronic switch control - all optical switching can be seen in the horizon

Roadmap of Finnish networking technologies

Challenges of modern switching

- Support of different traffic profiles
- constant and variable bit rates, bursty traffic, etc.
- Simultaneous switching of highly different data rates
- from kbits/s rates to Gbits/s rates
- Support of varying delay requirements
- constant and variable delays
- Scalability
- number of input/output links, link bit rates, etc.
- Reliability
- Cost
- Throughput

Switching modes

Switching Technology $\mathbf{S 3 8 . 1 6 5}$
http://www.netlab.hut.fi/opetus/s38165

Narrowband network evolution

- Early telephone systems used analog technology - frequency division multiplexing (FDM) and space division switching (SDS)
- When digital technology evolved time division multiplexing (TDM) and time division switching (TDS) became possible
- Development of electronic components enabled integration of TDM and TDS => Integrated Digital Network (IDN)
- Different and segregated communications networks were developed
- circuit switching for voice-only services
- packet switching for (low-speed) data services
- dedicated networks, e.g. for video and specialized data services

Segregated transport

Narrowband network evolution (cont.)

- Service integration became apparent to better utilize communications resources => IDN developed to ISDN (Integrated Services Digital Network)
- ISDN offered
- a unique user-network interface to support basic set of narrowband services
- integrated transport and full digital access
- inter-node signaling (based on packet switching)
- packet and circuit switched end-to-end digital connections
- three types of channels ($B=64 \mathrm{kbit} / \mathrm{s}, \mathrm{D}=16 \mathrm{kbit} / \mathrm{s}$ and $\mathrm{H}=\mathrm{nx} 64 \mathrm{kbit} / \mathrm{s}$)
- Three types of long-distance interconnections
- circuit switched, packet switched and signaling connections
- Specialized services (such as video) continued to be supported by separate dedicated networks

Integrated transport

Broadband network evolution

- Progress in optical technologies enabled huge transport capacities
=> integration of transmission of all the different networks (NB and BB) became possible
- Switching nodes of different networks co-located to configure multifunctional switches
- each type of traffic handled by its own switching module
- Multifunctional switches interconnected by broadband integrated transmission (BIT) systems terminated onto network-node interfaces (NNI)
- BIT accomplished with partially integrated access and segregated switching

Narrowband-integrated access and broadband-integrated transmission

Broadband network evolution (cont.)

- N-ISDN had some limitations:
- low bit rate channels
- no support for variable bit rates
- no support for large bandwidth services
- Connection oriented packet switching scheme, i.e. ATM (Asynchronous Transfer Mode), was developed to overcome limitations of N -ISDN
=> B-ISDN concept
=> integrated broadband transport and switching (no more need for specialized switching modules or dedicated networks)

Broadband integrated transport

OSI definitions for routing and switching

Switching modes

- Circuit switching
- Cell switching
- Packet switching
- Routing
- Layer 3-7 switching
- Label switching

Circuit switching

- End-to-end circuit established for a connection
- Signaling used to set-up, maintain and release circuits
- Circuit offers constant bit rate and constant transport delay
- Equal quality offered to all connections
- Transport capacity of a circuit cannot be shared
- Applied in conventional telecommunications networks (e.g. PDH/PCM and N-ISDN)

Cell switching

- Virtual circuit (VC) established for a connection
- Data transported in fixed length frames (cells), which carry information needed for routing cells along established VCs
- Forwarding tables in network nodes

Cell switching (cont.)

- Signaling used to set-up, maintain and release VCs as well as update forwarding tables
- VCs offer constant or variable bit rates and transport delay
- Transport capacity of links shared by a number of connections (statistical multiplexing)
- Different quality classes supported
- Applied, e.g. in ATM networks

Packet switching

- No special transport path established for a connection
- Variable length data packets carry information used by network nodes in making forwarding decisions
- No signaling needed for connection setup

Packet switching (cont.)

- Forwarding tables in network nodes are updated by routing protocols
- No guarantees for bit rate or transport delay
- Best effort service for all connections in conventional packet switched networks
- Transport capacity of links shared effectively
- Applied in IP (Internet Protocol) based networks

Layer 3-7 switching

- L3-switching evolved from the need to speed up (IP based) packet routing
- L3-switching separates routing and forwarding
- A communication path is established based on the first packet associated with a flow of data and succeeding packets are switched along the path (i.e. software based routing combined with hardware based one)
- Notice: In wire-speed routing traditional routing is implemented in hardware to eliminate performance bottlenecks associated with software based routing (i.e., conventional routing reaches/surpasses L3-switching speeds)

Layer 3-7 switching (cont.)

- In L4-L7 switching, forwarding decisions are based not only on MAC address of L2 and destination/source address of L3, but also on application port number of L4 (TCP/UDP) and on information of layers above L4

Label switching

- Evolved from the need to speed up connectionless packet switching and utilize L2-switching in packet forwarding
- A label switched path (LSP) established for a connection
- Forwarding tables in network nodes

Label switching (cont.)

- Signaling used to set-up, maintain and release LSPs
- A label is inserted in front of a L3 packet (behind L2 frame header)
- Packets forwarded along established LSPs by using labels in L2 frames
- Quality of service supported
- Applied, e.g. in ATM, Ethernet and PPP
- Generalized label switching scheme (GMPLS) extends MPLS to be applied also in optical networks, i.e., enables light waves to be used as LSPs

