Switching Technology S38.165

Pertti Raatikainen, research professor VTT Information Technology pertti.raatikainen@vtt.fi

© P. Raatikainen

Switching Technology / 2004

L1 - 1

General

• Lecturer:

Pertti Raatikainen, research professor /VTT email: pertti.raatikainen@vtt.fi

• Exercises:

Kari Seppänen, snr. research scientist /VTT email: kari.seppänen@vtt.fi

• Information:

http://www.netlab.hut.fi/opetus/s38165

Goals of the course

- Understand what switching is about
- Understand the basic structure and functions of a switching system
- Understand the role of a switching system in a transport network
- · Understand how a switching system works
- Understand technology related to switching
- Understand how conventional circuit switching is related to packet switching

© P. Raatikainen

Switching Technology / 2004

L1 - 3

Course outline

- Introduction to switching
 - switching in general
 - switching modes
 - transport and switching
- Switch fabrics
 - basics of fabric architectures
 - fabric structures
 - path search, self-routing and sorting

© P. Raatikainen

Switching Technology / 2004

Course outline

- Switch implementations
 - PDH switches
 - ATM switches
 - routers
- Optical switching
 - basics of WDM technology
 - components for optical switching
 - optical switching concepts

© P. Raatikainen

Switching Technology / 2004

L1 - 5

Course requirements

- Preliminary information
 - S-38.188 Tietoliikenneverkot or S-72.423 Telecommunication Systems (or a corresponding course)
- 13 lectures (á 3 hours) and 7 exercises (á 2 hours)
- Calculus exercises
- Grating
 - Examination, max 30 points

© P. Raatikainen

Switching Technology / 2004

Course material

- · Lecture notes
- Understanding Telecommunications 1, Ericsson & Telia, Studentlitteratur, 2001, ISBN 91-44-00212-2, Chapters 2-4.
- J. Hui: Switching and traffic theory for integrated broadband networks, Kluwer Academic Publ., 1990, ISBN 0-7923-9061-X, Chapters 1 - 6.
- H. J. Chao, C. H. Lam and E. Oki: *Broadband Packet Switching technologies A Practical Guide to ATM Switches and IP routers*, John Wiley & Sons, 2001, ISBN 0-471-00454-5.
- T.E. Stern and K. Bala: *Multiwavelength Optical Networks: A Layered Approach*, Addison-Wesley, 1999, ISBN 0-201-30967-X.

© P. Raatikainen

Switching Technology / 2004

L1 - 7

Additional reading

- A. Pattavina: Switching Theory Architecture and Performance in Broadband ATM Networks, John Wiley & Sons (Chichester), 1998, IBSN 0-471-96338-0, Chapters 2 - 4.
- R. Ramaswami and K. Sivarajan, Optical Networks, A Practical Perspective, Morgan Kaufman Publ., 2nd Ed., 2002, ISBN 1-55860-655-6.

© P. Raatikainen

Switching Technology / 2004

Schedule

Day	L/E	Topic	Material	Solutions
6.9.	L	Introduction to switching	L1_slides	
8.9.	L	Transmission techniques and multiplexing	L2 slides	
13.9	L	Basic concepts of switch fabrics	L3 slides	
16.9.	Е	Exercise 1	Ex_1	Solution 1
20.9.	L	Multistage fabric architectures 1	L4 slides	
21.9.	Е	Exercise 2	Ex_2	Solution 2
23.9.	L	Multistage fabric architectures 2	L5_slides	
27.9.	L	Self-routing and sorting networks	L6 slides	
28.9.	Н	Exercise 3	Ex_3	Solution 3
29.9	L	Switch fabric implementations	L7 slides	
4.10	L	PDH switches	L8 slides	
6.10	Е	Exercise 4	Ex_4	Solution 4
7.10.	L	ATM switches	L9 slides	
11.10.	L	Routers	L10_slides	
12.10.	Е	Exercise 5	Ex_5	Solution 5
13.10.	L	Introduction to optical networks	L11 slides	
18.10	L	Optical network architectures	L12_slides	
20.4.	L	Optical switches	L13_slides	
21.10.	Е	Exercise 6	Ex 6	Solution 6
25.10.	Е	Exercise 7	Ex_7	Solution 7
28.10	Е	Exercise 8	Ex_8	

© P. Raatikainen

Switching Technology / 2004

L1 - 9

Introduction to switching

Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165

Introduction to switching

- Switching in general
- Switching modes
- Transport and switching

© P. Raatikainen

Switching Technology / 2004

L1 - 11

Switching in general

ITU-T specification for switching:

"The establishing, on-demand, of an individual connection from a desired inlet to a desired outlet within a set of inlets and outlets for as long as is required for the transfer of information."

inlet/outlet = a line or a channel

© P. Raatikainen

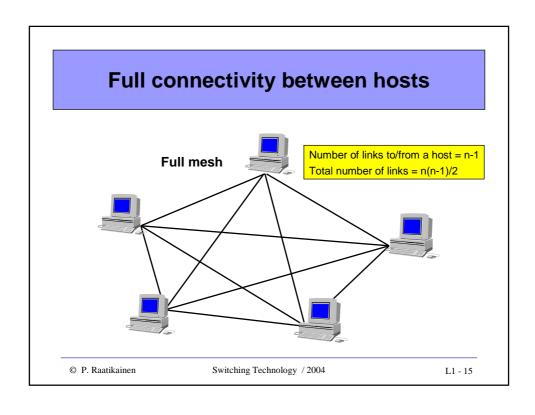
Switching Technology / 2004

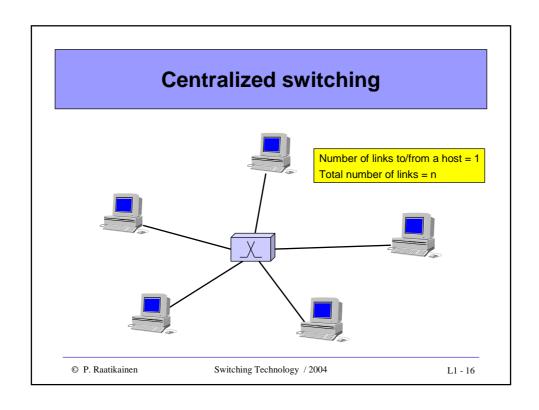
Switching in general (cont.)

- Switching implies directing of information flows in communications networks based on known rules
- Switching takes place in specialized network nodes
- Data switched on bit, octet, frame or packet level
- · Size of a switched data unit is variable or fixed

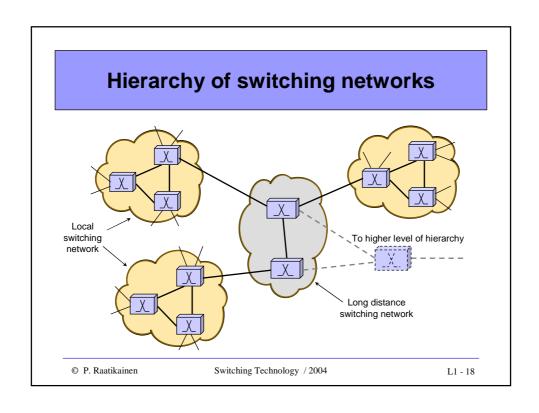
© P. Raatikainen

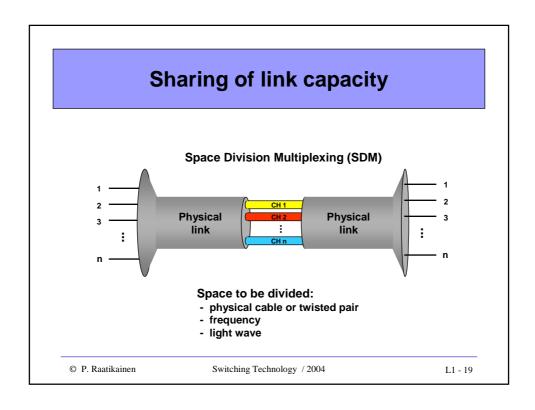
Switching Technology / 2004

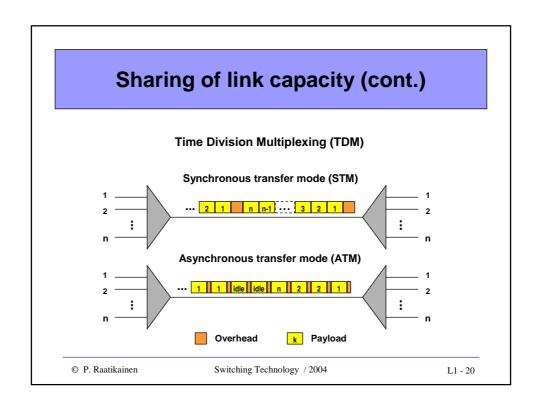

L1 - 13

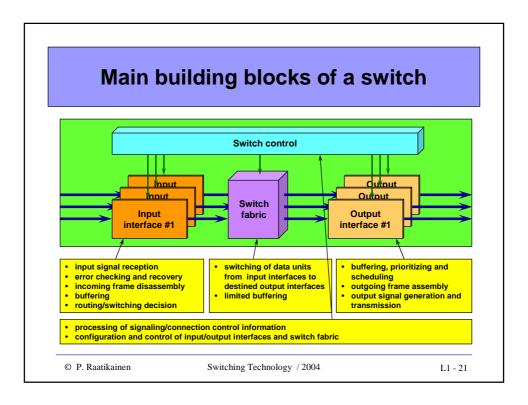

Why switching?

- Switches allow reduction in overall network cost by reducing number and/or cost of transmission links required to enable a given user population to communicate
- Limited number of physical connections implies need for sharing of transport resources, which means
 - better utilization of transport capacity
 - use of switching
- Switching systems are central components in communications networks

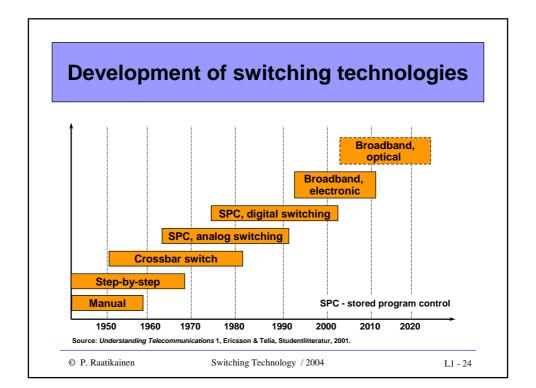

© P. Raatikainen


Switching Technology / 2004





Heterogeneity by switching


- Switching systems allow heterogeneity among terminals
 - terminals of different processing and transmission speeds supported
 - terminals may implement different sets of functionality
- and heterogeneity among transmission links by providing a variety of interface types
 - data rates can vary
 - different link layer framing applied
 - optical and electrical interfaces
 - variable line coding

Basic types of witching networks

- Statically switched networks
 - connections established for longer periods of time (typically for months or years)
 - management system used for connection manipulation
- · Dynamically switched networks
 - connections established for short periods of time (typically from seconds to tens of minutes)
 - active signaling needed to manipulate connections
- · Routing networks
 - no connections established no signaling
 - each data unit routed individually through a network
 - routing decision made dynamically or statically

© P. Raatikainen

Switching Technology / 2004

Development of switching tech. (cont.)

Manual systems

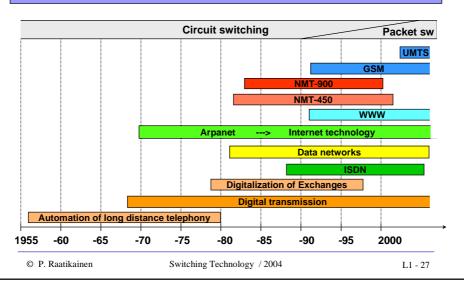
 in the infancy of telephony, exchanges were built up with manually operated switching equipment (the first one in 1878 in New Haven, USA)

· Electromechanical systems

- manual exchanges were replaced by automated electromechanical switching systems
- a patent for automated telephone exchange in 1889 (Almon B. Strowger)
- step-by-step selector controlled directly by dial of a telephone set
- developed later in the direction of register-controlled system in which number information is first received and analyzed in a register – the register is used to select alternative switching paths (e.g. 500 line selector in 1923 and crossbar system in 1937)
- more efficient routing of traffic through transmission network
- increased traffic capacity at lower cost

© P. Raatikainen Switching Technology / 2004 L1 - 25

Development of switching tech. (cont.)


Computer-controlled systems

- FDM was developed round 1910, but implemented in 1950's (ca. 1000 channels transferred in a coaxial cable)
- PCM based digital multiplexing introduced in 1970's transmission quality improved – costs reduced further when digital group switches were combined with digital transmission systems
- computer control became necessary the first computer controlled exchange put into service in 1960 (in USA)
- strong growth of data traffic resulted in development of separate data networks and switches – advent of packet switching (sorting, routing and buffering)
- N-ISDN network combined telephone exchange and packet data switches
- ATM based cell switching formed basis for B-ISDN
- next step is to use optical switching with electronic switch control all optical switching can be seen in the horizon

L1 - 26

© P. Raatikainen Switching Technology / 2004

Challenges of modern switching

- Support of different traffic profiles
 - constant and variable bit rates, bursty traffic, etc.
- · Simultaneous switching of highly different data rates
 - · from kbits/s rates to Gbits/s rates
- Support of varying delay requirements
 - · constant and variable delays
- Scalability
 - number of input/output links, link bit rates, etc.
- Reliability
- Cost
- Throughput

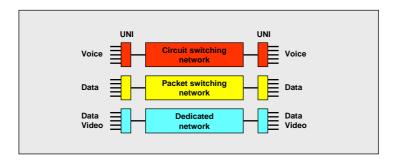
Switching modes

Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165

© P. Raatikainen

Switching Technology / 2004

L1 - 29


Narrowband network evolution

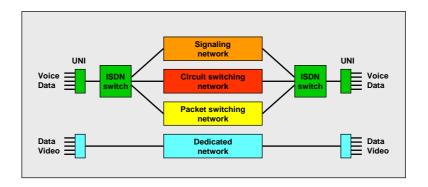
- Early telephone systems used analog technology frequency division multiplexing (FDM) and space division switching (SDS)
- When digital technology evolved time division multiplexing (TDM) and time division switching (TDS) became possible
- Development of electronic components enabled integration of TDM and TDS => Integrated Digital Network (IDN)
- Different and segregated communications networks were developed
 - circuit switching for voice-only services
 - packet switching for (low-speed) data services
 - dedicated networks, e.g. for video and specialized data services

© P. Raatikainen

Switching Technology / 2004

Segregated transport

© P. Raatikainen


Switching Technology / 2004

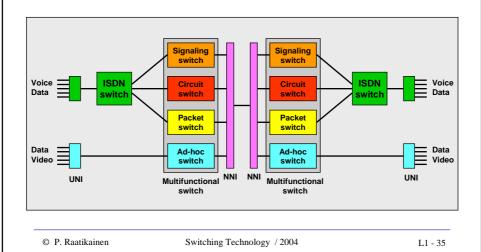
L1 - 31

Narrowband network evolution (cont.)

- Service integration became apparent to better utilize communications resources
 - => IDN developed to ISDN (Integrated Services Digital Network)
- ISDN offered
 - a unique user-network interface to support basic set of narrowband services
 - integrated transport and full digital access
 - inter-node signaling (based on packet switching)
 - packet and circuit switched end-to-end digital connections
 - three types of channels (B=64 kbit/s, D=16 kbit/s and H=nx64 kbit/s)
- · Three types of long-distance interconnections
 - circuit switched, packet switched and signaling connections
- Specialized services (such as video) continued to be supported by separate dedicated networks

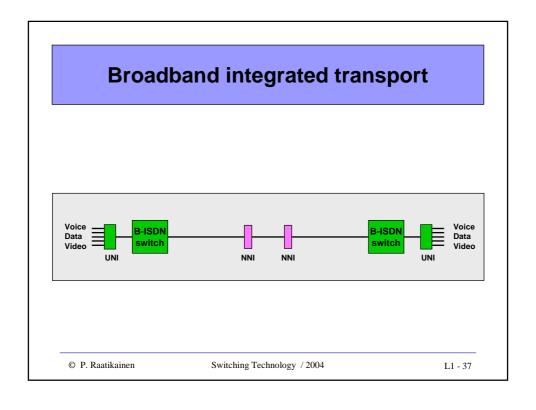
Integrated transport

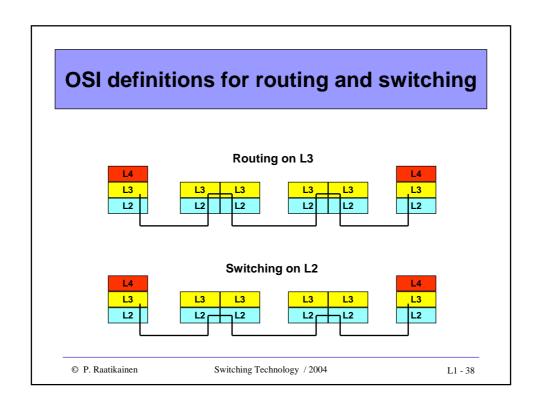
© P. Raatikainen


Switching Technology / 2004

L1 - 33

Broadband network evolution


- Progress in optical technologies enabled huge transport capacities
 - => integration of transmission of all the different networks (NB and BB) became possible
- Switching nodes of different networks co-located to configure multifunctional switches
 - each type of traffic handled by its own switching module
- Multifunctional switches interconnected by broadband integrated transmission (BIT) systems terminated onto network-node interfaces (NNI)
- BIT accomplished with partially integrated access and segregated switching

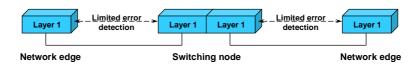

Narrowband-integrated access and broadband-integrated transmission

Broadband network evolution (cont.)

- · N-ISDN had some limitations:
 - low bit rate channels
 - no support for variable bit rates
 - no support for large bandwidth services
- Connection oriented packet switching scheme, i.e. ATM (Asynchronous Transfer Mode), was developed to overcome limitations of N-ISDN
 - => B-ISDN concept
 - => integrated broadband transport and switching (no more need for specialized switching modules or dedicated networks)

Switching modes

- Circuit switching
- Cell switching
- Packet switching
 - Routing
 - Layer 3 7 switching
 - Label switching

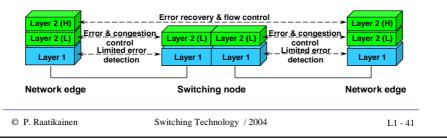

© P. Raatikainen

Switching Technology / 2004

L1 - 39

Circuit switching

- End-to-end circuit established for a connection
- · Signaling used to set-up, maintain and release circuits
- · Circuit offers constant bit rate and constant transport delay
- · Equal quality offered to all connections
- Transport capacity of a circuit cannot be shared
- Applied in conventional telecommunications networks (e.g. PDH/PCM and N-ISDN)

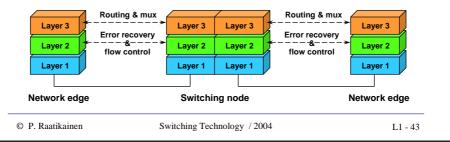


© P. Raatikainen

Switching Technology / 2004

Cell switching

- · Virtual circuit (VC) established for a connection
- Data transported in fixed length frames (cells), which carry information needed for routing cells along established VCs
- · Forwarding tables in network nodes



Cell switching (cont.)

- Signaling used to set-up, maintain and release VCs as well as update forwarding tables
- · VCs offer constant or variable bit rates and transport delay
- Transport capacity of links shared by a number of connections (statistical multiplexing)
- · Different quality classes supported
- · Applied, e.g. in ATM networks

Packet switching

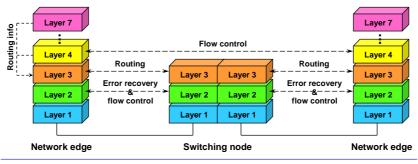
- · No special transport path established for a connection
- Variable length data packets carry information used by network nodes in making forwarding decisions
- · No signaling needed for connection setup

Packet switching (cont.)

- Forwarding tables in network nodes are updated by routing protocols
- No guarantees for bit rate or transport delay
- Best effort service for all connections in conventional packet switched networks
- · Transport capacity of links shared effectively
- · Applied in IP (Internet Protocol) based networks

Layer 3 - 7 switching

- L3-switching evolved from the need to speed up (IP based) packet routing
- · L3-switching separates routing and forwarding
- A communication path is established based on the first packet associated with a flow of data and succeeding packets are switched along the path (i.e. software based routing combined with hardware based one)
- Notice: In wire-speed routing traditional routing is implemented in hardware to eliminate performance bottlenecks associated with software based routing (i.e., conventional routing reaches/surpasses L3-switching speeds)

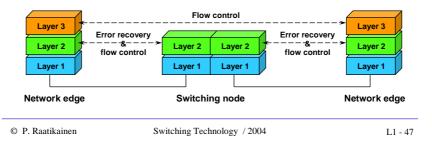

© P. Raatikainen

Switching Technology / 2004

L1 - 45

Layer 3 - 7 switching (cont.)

 In L4 - L7 switching, forwarding decisions are based not only on MAC address of L2 and destination/source address of L3, but also on application port number of L4 (TCP/UDP) and on information of layers above L4



© P. Raatikainen

Switching Technology / 2004

Label switching

- Evolved from the need to speed up connectionless packet switching and utilize L2-switching in packet forwarding
- A label switched path (LSP) established for a connection
- Forwarding tables in network nodes

Label switching (cont.)

- · Signaling used to set-up, maintain and release LSPs
- A label is inserted in front of a L3 packet (behind L2 frame header)
- Packets forwarded along established LSPs by using labels in L2 frames
- · Quality of service supported
- Applied, e.g. in ATM, Ethernet and PPP
- Generalized label switching scheme (GMPLS) extends MPLS to be applied also in optical networks, i.e., enables light waves to be used as LSPs