Transmission techniques and multiplexing hierarchies

Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165

© P. Raatikainen

Switching Technology / 2004

L2 - 1

Transmission techniques and multiplexing hierarchies

- Transmission of data signals
- Timing and synchronization
- Transmission techniques and multiplexing
 - PDH
 - ATM
 - IP/Ethernet
 - SDH/SONET
 - OTN
 - GFP

Transmission of data signals

- Encapsulation of user data into layered protocol structure
- Physical and link layers implement functionality that have relevance to switching
 - multiplexing of transport signals (channels/connections)
 - medium access and flow control
 - error indication and recovery
 - bit, octet and frame level timing/synchronization
 - line coding (for spectrum manipulation and timing extraction)

© P. Raatikainen

Switching Technology / 2004

Synchronization of transmitted data

- Successful transmission of data requires bit, octet, frame and packet level synchronism
- Synchronous systems (e.g. PDH and SDH) transfer additional information (embedded into transmitted line signal) for accurate recovery of clock signals
- Asynchronous systems (e.g. Ethernet) transfer additional bit patterns to synchronize receiver logic

© P. Raatikainen

Switching Technology / 2004

L2 - 5

Timing accuracy

- Inaccuracy of frequency classified in telecom networks to
 - jitter (short term changes in frequency > 10 Hz)
 - wander (< 10 Hz fluctuation)
 - long term frequency shift (drift or skew)
- To maintain required timing accuracy network nodes are connected to a hierarchical synchronization network
 - Universal Time Coordinated (UTC): error in the order of 10⁻¹³
 - Error of Primary Reference Clock (PRC) of the telecom network 10⁻¹¹

© P. Raatikainen

Switching Technology / 2004

Timing accuracy (cont.)

- Inaccuracy of clock frequency causes
 - degraded quality of received signal
 - bit errors in regeneration
 - slips: in PDH networks a frame is duplicated or lost due to timing difference between the sender and receiver
- Based on applied synchronization method, networks are divided into
 - fully synchronous networks (e.g. SDH)
 - plesiochronous networks (e.g. PDH), sub-networks have nominally the same clock frequency but are not synchronized to each other
 - mixed networks

© P. Raatikainen

Switching Technology / 2004

L2 - 7

Methods for bit level timing

- To obtain bit level synchronism receiver clocks must be synchronized to incoming signal
- Incoming signal must include transitions to keep receiver's clock recovery circuitry in synchronism
- · Methods to introduce line signal transitions
 - Line coding
 - Block coding
 - Scrambling

© P. Raatikainen

Switching Technology / 2004

- Alternate Digit Inversion

ADI RZ - Alternate Digit Inversion Return to Zero
AMI RZ - Alternate Mark Inversion Return to Zero

© P. Raatikainen

Switching Technology / 2004

L2 - 9

Line coding (cont.)

- ADI, ADI RZ and codes alike introduce DC balance shift => clock recovery becomes difficult
- AMI and AMI RZ introduces DC balance, but lacks effective ability to introduce signal transitions
- HDB3 (High Density Bipolar 3) code, used in PDH systems, guarantees a signal transition at least every fourth bit
 - 0000 coded by 000V when there is an odd number of pulses since the last violation (V) pulse
 - 0000 coded by B00V when there is an even number of pulses since the last violation pulse

© P. Raatikainen

Switching Technology / 2004

Line coding (cont.)

- When bit rates increase (> 100 Mbit/s) jitter requirements become tighter and signal transitions should occur more frequently than in HDB3 coding
- CMI (Coded Mark Inversion) coding was introduced for electronic differential links and for optical links
- CMI doubles bit rate on transmission link -> higher bit rate implies larger bandwidth and shortened transmission distance

© P. Raatikainen

Switching Technology / 2004

L2 - 11

Block coding

- Entire blocks of n bits are replaced by other blocks of m bits (m > n)
- nBmB block codes are usually applied on optical links by using on-off keying
- Block coding adds variety of "1"s and "0"s to obtain better clock synchronism and reduced jitter
- Redundancy in block codes (in the form of extra combinations) enables error recovery to a certain extent
- When m>n the coded line signal requires larger bandwidth than the original signal
- Examples: 4B5B (FDDI), 5B6B (E3 optical links) and 8B10B (GbE)

Coding examples

4B5B coding

Input word	Output word	Other output words		
word 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1		0 0 0 0 0 Quiet line symbol 11 1 1 1 Idle symbol 0 0 1 0 0 Halt line symbol 11 0 0 0 Start symbol 1 0 0 0 1 Start symbol 0 1 1 0 1 End symbol 0 1 1 1 Reset symbol 1 1 0 0 1 Set Symbol 1 1 0 0 1 Set Symbol 0 0 0 0 1 Invalid 0 0 0 1 1 Invalid 0 0 0 1 1 Invalid 0 0 1 1 Invalid 0 0 1 1 Invalid 0 1 1 1 Invalid 0 1 1 Invalid		
1110	11100	0 1 1 0 0 Invalid 1 0 0 0 0 Invalid		

5B6B coding

Input word	Output word
00000	101011
00001	101010
00010	101001
00011	111000
11100	010011
11101	010111
11110	010111
11111	011011

© P. Raatikainen

Switching Technology / 2004

L2 - 13

Scrambling

- Data signal is changed bit by bit according to a separate repetitive sequence (to avoid long sequences of "1"s or "0"s)
- Steps of the sequence give information on how to handle bits in the signal being coded
- A scrambler consists of a feedback shift register described by a polynomial (x^N + ... + x^m + ... + x^k + ... + x + 1)
- Polynomial specifies from where in the shift register feedback is taken
- Output bit rate is the same as the input bit rate
- · Scrambling is not as effective as line coding

Scrambler example

SDH/STM-1 uses x7+x6+1 polynomial

© P. Raatikainen

Switching Technology / 2004

L2 - 15

Methods for octet and frame level timing

- Frame alignment bit pattern
- Start of frame signal
- Use of frame check sequence

Frame alignment sequence

- Data frames carry special frame alignment bit patterns to obtain octet and frame level synchronism
- · Data bits scrambled to avoid misalignment
- Used in networks that utilize synchronous transmission, e.g. in PDH, SDH and OTN
- Examples
 - PDH E1 frames carry bit sequence 0011011 in every other frame (even frames)
 - SDH and OTN frames carry a six octet alignment sequence (hexadecimal form: F6 F6 F6 28 28 28) in every frame

© P. Raatikainen

Switching Technology / 2004

L2 - 17

Start of frame signal

- Data frames carry special bit patterns to synchronize receiver logic
- False synchronism avoided for example by inserting additional bits into data streams
- Used in synchronous and asynchronous networks, e.g., Ethernet and HDLC
- Examples
 - Ethernet frames are preceded by a 7-octet preamble field (10101010) followed by a start-of-frame delimiter octet (10101011)
 - HDLC frames are preceded by a flag byte (0111 1110)

© P. Raatikainen

Switching Technology / 2004

Frame check sequence

- Data frames carry no special bit patterns for synchronization
- Synchronization is based on the use of error indication and correction fields
 - CRC (Cyclic Redundancy Check) calculation
- Used in bit synchronous networks such as ATM and GFP (Generic Framing Procedures)
- Example
 - ATM cells streams can be synchronized to HEC (Header Error Control) field, which is calculated across ATM cell header

© P. Raatikainen

Switching Technology / 2004

L2 - 19

Transmission techniques

- PDH (Plesiochronous Digital Hierarchy)
- ATM (Asynchronous Transfer Mode)
- IP/Ethernet
- SDH (Synchronous Digital Hierarchy)
- OTN (Optical Transport network)
- GFP (Generic Framing Procedure)

© P. Raatikainen

Switching Technology / 2004

Switching Technology / 2004

L2 - 21

transmission format in the telecommunication network is

PCM 30 (E1)

© P. Raatikainen

PDH-multiplexing

- Tributaries have the same nominal bit rate, but with a specified, permitted deviation (100 bit/s for 2.048 Mbit/s)
- Plesiochronous = tributaries have almost the same bit rate
- Justification and control bits are used in multiplexed flows
- First order (E1) is octet-interleaved, but higher orders (E2, ...) are bit-interleaved

PDH network elements

concentrator

 n channels are multiplexed to a higher capacity link that carries m channels (n > m)

multiplexer

n channels are multiplexed to a higher capacity link that carries n channels

cross-connect

- static multiplexing/switching of user channels

switch

© P. Raatikainen

- switches incoming TDM/SDM channels to outgoing ones

© P. Raatikainen Switching Technology / 2004

L2 - 25

L2 - 26

Concentrator Cross-connect moutput channels Multiplexer moutput channels Multiplexer moutput channels

Switching Technology / 2004

SDH-multiplexing

- Multiplexing hierarchy for plesiochronous and synchronous tributaries (e.g. E1 and E3)
- Octet-interleaving, no justification bits tributaries visible and available in the multiplexed SDH flow
- SDH hierarchy divided into two groups:
 - multiplexing level (virtual containers, VCs)
 - line signal level (synchronous transport level, STM)
- Tributaries from E1 (2.048 Mbit/s) to E4 (139.264 Mbit/s) are synchronized (using justification bits if needed) and packed in containers of standardized size
- Control and supervisory information (POH, path overhead) added to containers => virtual container (VC)

© P. Raatikainen

Switching Technology / 2004

L2 - 29

SDH-multiplexing (cont.)

- Different sized VCs for different tributaries (VC-12/E1, VC-3/E3, VC-4/E4)
- Smaller VCs can be packed into a larger VC (+ new POH)
- Section overhead (SOH) added to larger VC
 transport module
- Transport module corresponds to line signal (bit flow transferred on the medium)
 - bit rate is 155.52 Mbit/s or its multiples
 - transport modules called STM-N (N = 1, 4, 16, 64, ...)
 - bit rate of STM-N is Nx155.52 Mbit/s
 - duration of a module is 125 μs (= duration of a PDH frame)

© P. Raatikainen

Switching Technology / 2004

SDH network elements

- regenerator (intermediate repeater, IR)
 - regenerates line signal and may send or receive data via communication channels in RSOH header fields
- multiplexer
 - terminal multiplexer multiplexes/demultiplexes PDH and SDH tributaries to/from a common STM-n
 - add-drop multiplexer adds or drops tributaries to/from a common STM-n
- · digital cross-connect
 - used for rearrangement of connections to meet variations of capacity or for protection switching
 - connections set up and released by operator

© P. Raatikainen Switching Technology / 2004

L2 - 31

Example SDH network elements

© P. Raatikainen

Switching Technology / 2004

Synchronization of payload

- Position of each octet in a STM frame (or VC frame) has a number
- AU pointer contains position number of the octet in which VC starts
- Lower order VC included as part of a higher order VC (e.g. VC-12 as part of VC-4)

© P. Raatikainen

Switching Technology / 2004

L2 - 35

ATM concept in summary

- cell
 - 53 octets
- routing/switching
 - based on VPI and VCI
- adaptation
 - processing of user data into ATM cells
- error control
 - cell header checking and discarding
- flow control
 - no flow control
 - input rate control
- congestion control
 - cell discarded (two priorities)

ATI	M pro	oto	col reference mode	
	AAL	Co	nvergence sublayer (CS)	
	AAL	Segmentation and reassembly (SAR)		
		Generic flow control		
			I/VCI translation	
		Mu	Itiplexing and demultiplexing of cells	
			Cell rate decoupling	
	Phys	72	HEC header sequence generation/verification Cell delineation	
			Transmission frame adaptation	
			Transmission frame generation/recovery	
			Timing	
		Ā	Physical medium	

Physical layers for ATM

- SDH (Synchronous Digital Hierarchy)
 - STM-1 155 Mbit/s
 - STM-4 622 Mbit/s
 - STM-16 2.4 Gbit/s
- PDH (Plesiochronous Digital Hierarchy)
 - E1 2 Mbit/s
 - E3 34 Mbit/s
 - E4 140 Mbit/s
- TAXI 100 Mbit/s and IBM 25 Mbit/s
- Cell based interface
 - uses standard bit rates and physical level interfaces (e.g. E1, STM-1 or STM-4)
 - HEC used for framing

© P. Raatikainen

Switching Technology / 2004

Cell based interface

Frame structure for cell base interfaces:

- PL cells processed on physical layer (not on ATM layer)
- · IDLE cell for cell rate adaptation
- PL-OAM cells carry physical level OAM information (regenerator (F1) and transmission path (F3) level messages)
- · PL cell identified by a pre-defined header
 - · 00000000 00000000 0000000 00000001 (IDLE cell)
 - 00000000 00000000 0000000 00001001 (phys. layer OAM)
 - xxxx0000 0000000 0000000 0000xxxx (reserved for phys. layer)

H = ATM cell Header, PL = Physical Layer, OAM = Operation Administration and Maintenance

© P. Raatikainen

Switching Technology / 2004

L2 - 45

ATM network elements

- Gross-connect
 - switching of virtual paths (VPs)
 - VP paths are statically connected
- Switch
 - switching of virtual channel (VCs)
 - VC paths are dynamically or statically connected
- DSLAM (Digital Subscriber Line Access Multiplexer)
 - concentrates a larger number of sub-scriber lines to a common higher capacity link
 - aggregated capacity of subscriber lines surpasses that of the common link

Ethernet

- Originally a link layer protocol for LANs (10 and 100 MbE)
- · Upgrade of link speeds
 - => optical versions 1GbE and 10 GbE
 - => suggested for long haul transmission
- No connections each data terminal (DTE) sends data when ready - MAC is based on CSMA/CD
- Synchronization
 - line coding, preamble pattern and start-of-frame delimiter
 - Manchester code for 10 MbE, 8B6T for 100 MbE, 8B10B for GbE

© P. Raatikainen

Switching Technology / 2004

L2 - 47

Ethernet frame

Preamble - AA AA AA AA AA AA (Hex)

SFD - Start of Frame Delimiter AB (Hex)

DA - Destination Address

SA - Source Address

T/L - Type (RFC894, Ethernet) or Length (RFC1042, IEEE 802.3) indicator

CRC - Cyclic Redundance Check

Inter-frame gap 12 octets (9,6 µs /10 MbE)

© P. Raatikainen

Switching Technology / 2004

Preamble - AA AA AA AA AA AA (Hex)

SFD - Start of Frame Delimiter AB (Hex)

DA - Destination Address

SA - Source Address

T/L - Type (RFC894, Ethernet) or Length (RFC1042, IEEE 802.3) indicator

CRC - Cyclic Redundancy Check

Inter-frame gap 12 octets (96 ns /1 GbE)
Extension - for padding short frames to be 512 octets long

© P. Raatikainen

Switching Technology / 2004

L2 - 49

Ethernet network elements

Repeater

- interconnects LAN segments on physical layer
- regenerates all signals received from one segment and forwards them onto the next

Bridge

- interconnects LAN segments on link layer (MAC)
- all received frames are buffered and error free ones are forwarded to another segment (if they are addressed to it)

· Hub and switch

- hub connects DTEs with two twisted pair links in a star topology and repeats received signal from any input to all output links
- switch is an intelligent hub, which learns MAC addresses of DTEs and is capable of directing received frames only to addressed ports

Optical transport network

- Optical Transport Network (OTN) being developed by ITU-T (G.709) specifies interfaces for optical networks
- Goal to gather for the transmission needs of today's wide range of digital services and to assist network evolution to higher bandwidths and improved network performance
- OTN builds on SDH and introduces some refinements:
 - management of optical channels in optical domain
 - FEC to improve error performance and allow longer link spans
 - provides means to manage optical channels end-to-end in optical domain (i.e. no O/E/O conversions)
 - interconnections scale from a single wavelength to multiple ones

© P. Raatikainen

Switching Technology / 2004

L2 - 51

OTN reference model

- OCh Optical Channel
- OA Optical Amplifier
- OMS Optical Multiplexing Section
- OMPX Optical Multiplexer
- OTS Optical Transport Section

© P. Raatikainen

Switching Technology / 2004

OTN network elements

- · optical amplifier
 - amplifies optical line signal
- · optical multiplexer
 - multiplexes optical wavelengths to OMS signal
 - add-drop multiplexer adds or drops wavelengths to/from a common OMS
- optical cross-connect
 - used to direct optical wavelengths (channels) from an OMS to another
 - connections set up and released by operator
- · optical switches?
 - when technology becomes available optical switches will be used for switching of data packets in optical domain

© P. Raatikainen

Switching Technology / 2004

L2 - 57

Generic Framing Procedure (GFP)

- Recently standardized traffic adaptation mechanism especially for transporting block-coded and packet-oriented data
- Standardized by ITU-T (G.7041) and ANSI (T1.105.02) (the only standard supported by both organizations)
- Developed to overcome data transport inefficiencies of existing ATM, POS, etc. technologies
- Operates over byte-synchronous communications channels (e.g. SDH/SONET and OTN)
- Supports both fixed and variable length data frames
- Generalizes error-control-based frame delineation scheme (successfully employed in ATM)
 - relies on payload length and error control check for frame boundary delineation

© P. Raatikainen

Switching Technology / 2004

GFP (cont.)

- Two frame types: client and control frames
 - client frames include client data frames and client management frames
 - control frames used for OAM purposes
- Multiple transport modes (coexistent in the same channel) possible
 - Frame-mapped GFP for packet data, e.g. PPP, IP, MPLS and Ethernet)
 - Transparent-mapped GFP for delay sensitive traffic (storage area networks), e.g. Fiber Channel, FICON and ESCON

© P. Raatikainen

Switching Technology / 2004

GFP client data frame

- · Composed of a frame header and payload
- · Core header intended for data link management
 - payload length indicator (PLI, 2 octets), HEC (CRC-16, 2 octets)
- Payload field divided into payload header, payload and optional FCS (CRC-32) sub-fields
- · Payload header includes:
 - payload type (2 octets) and type HEC (2 octets) sub-fields
 - optional 0 60 octets of extension header
- · Payload:
 - variable length (0 65 535 octets, including payload header and FCS) for frame mapping mode (GFP-F) - frame multiplexing
 - fixed size Nx[536, 520] for transparent mapping mode (GFP-T) no frame multiplexing

© P. Raatikainen

Switching Technology / 2004

L2 - 61

GFP frame structure EXI PFI Payload length indicate Payload type UP Core HEC Core 0 - 60 bytes extension header Spare Payload heade sion HEC MSB (optional) **Payload** CID - Channel identifier FCS - Frame Check Sequence EXI - Extension Header Identifier HEC - Header Error Check PFI - Payload FCS Indicator PTI - Payload Type Indicator Payload FCS UPI - User payload Identifier Source: IEEE Communications Magazine, May 2002 © P. Raatikainen Switching Technology / 2004 L2 - 62

GFP relationship to client signals and transport paths

ESCON - Enterprise System CONnection

FICON - Fiber CONnection
IP/PPP - IP over Point-to-Point Protocol

MAPOS - Multiple Access Protocol over SONET/SDH

- Resilient Packet Ring

Source: IEEE Communications Magazine, May 2002

© P. Raatikainen Switching Technology / 2004

Adapting traffic via GFP-F and GFP-T

GFP-F frame

				
PLI 2 bytes	cHEC 2 bytes	Payload header 4 bytes	Client PDU (PPP, IP, Ethernet, RPR, etc.)	FCS (optional) 4 bytes

GFP-T frame

FCS - Frame Check Sequence cHEC - Core Header Error Control PDU - Packet Data Unit - Payload Length Indicator

© P. Raatikainen Switching Technology / 2004 L2 - 64

