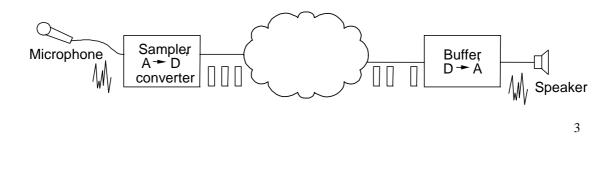


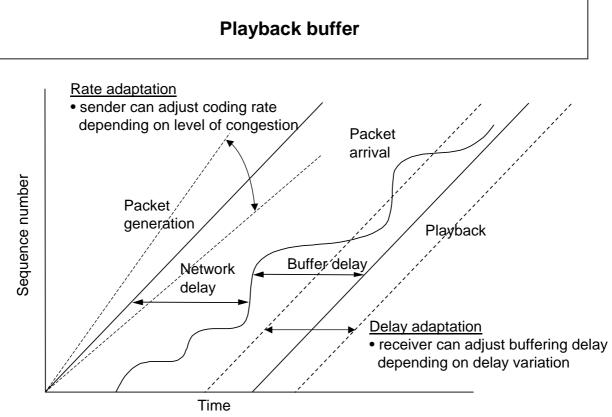
Real-Time Services and Multimedia

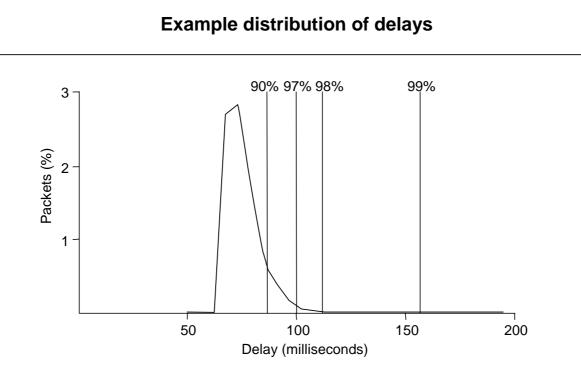
188lecture12.ppt

1


S-38.188 - Computer Networks - Spring 2003

Outline


- Application requirements
- Interactive multimedia
- Streaming multimedia


Real time application

- Example application (audio)
 - sample voice once every 125us
 - each sample has a playback time
 - packets experience variable delay in network
 - playback time = point in time at which data is needed in the receiving host
 - data arriving after playback time is useless
 - playback point = constant offset added to playback time
 - delays vary in time, each packet can come with different delay
 - · absorb variations by using a playback buffer
 - ok, as long as playback buffer does not drain

S-38.188 - Computer Networks - Spring 2003

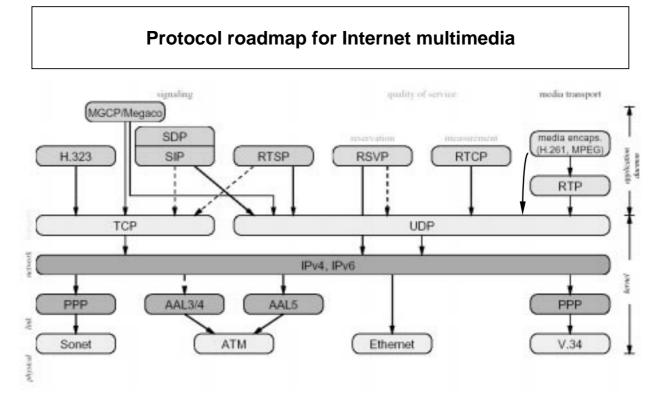
- One way delay of a path across Internet measured over a whole day
- If playback buffer delay (play back point) = 100 ms \Rightarrow 3% packets are lost
- Play back point of almost 200 ms needed to have all data arrive on time

S-38.188 - Computer Networks - Spring 2003

Application performance issues

- Issues affecting real-time application performance
 - large delay prohibits conversation
 - variations in delay
 - · can be smoothened by using buffers, but overall delay increases
 - resource reservation may help (note problems with reservations)
 - echo
 - needs to be removed when large delays
 - lost packets
 - replace by silence, extrapolation, or previous data
 - observing silence
 - can compress data more
 - address conversion: phone number ⇔ IP address
 - need control messages end-to-end
 - security
 - fire wall may add difficulties

5


Interactive vs. streaming

- Requirement: deliver data in "timely" manner
 - reliability: 100% reliability not always required
- Interactive multimedia: short end-end delay
 - e.g., IP telephony, tele/videoconferencing, Internet games, virtual worlds
 - excessive delay impairs human interaction
 - end-end delay requirements:
 - video: < 150 msec acceptable
 - audio: < 150 msec good, < 400 msec OK
 - includes application-level (packetization) and network delays
- Streaming (non-interactive) multimedia: sensitive to delay variation
 - data must arrive in time for "smooth" playout (e.g., RealPlayer, WindowsMediaPlayer)
 - late arriving data introduces gaps in rendered audio/video
 - media stored at source
 - transmitted to client
 - streaming: client playout begins before all data has arrived
 - timing constraint for still-to-be transmitted data: in time for playout 7

S-38.188 - Computer Networks - Spring 2003

Different protocols

- · For streaming multimedia, need protocols for
 - data transport: RTP, application specific transport over UDP (or TCP => overkill, unnecessary retransmits)
 - stream control: RTSP
- For interactive multimedia, need protocols for
 - data transport: RTP, application specific over UDP
 - connection control: RTCP
 - session and call control: H.323 (SDP, SIP,...)

H. Schulzrinne and J. Rosenberg, "Internet Telephony: Architecture and Protocolsan IETF Perspective", available from http://www.cs.columbia.edu/~hgs/

9

S-38.188 - Computer Networks - Spring 2003

• Streaming multimedia

Real-time Transport Protocol (RTP)

- RTP contains functionality that is specific to multimedia
 - development of RTP based on earlier work on "vat" conference application for MBone (Multicast backbone)
 - much of work on multimedia protocols for Internet based on MBone development
- Runs on top of transport-layer protocol (usually UDP)
 - called transport protocol as provides common end-to-end functions (difficulty in fitting to the strict protocol layer model)
 - pays attention to interaction between different applications (e.g., synchronization of audio and video streams)

S-38.188 - Computer Networks - Spring 2003

RTP properties

- RTP allows similar applications to interoperate with each other
 - possible to communicate/negotiate encoding and compressing schemes
- Timing mechanism
 - RTP provides time stamping to enable the recipient of data stream to determine the timing relationship in data \Rightarrow data can be played back correctly
- Synchronization
 - RTP supports synchronization of multiple media in a conference
- Congestion control
 - RTP gives indications of packet losses (some multimedia applications can adjust to congestion, for example change coding)
 - up to application to react to these
- Frame boundary indication
 - frame boundaries can signify, e.g., talk/silence periods, application can use these to its advantage
- "User friendly" identification of users (user@domain.com)
- Supports multicast

RTP and RTCP

- RTP DOES NOT
 - reserve resources
 - guarantee QoS
 - guarantee timely delivery
 - guarantee reliable delivery (if needed)
 - \Rightarrow relies on lower-layer services to do so

Application
RTP
UDP
IP
Subnet

- RTP standard has too parts
 - RTP to exchange multimedia data (packet format)
 - fields for frame indications, sequence numbers, timestamps ...
 - RTP Control Protocol (RTCP) to monitor QoS and convey information about the participants in an ongoing session
- RTP and RTCP do not address session control

S-38.188 - Computer Networks - Spring 2003

RTP Control Protocol - RTCP

- Based on periodic transmission of control packets to all participants in the session, using the same distribution mechanism as the data packets
- Performs 4 functions
 - provides feedback on the quality of the data distribution
 - related to flow and congestion control functions of other transport protocols
 - rate must be controlled in order to scale up to large number of participants
 - carries CNAME, persistent transport-level identifier for an RTP source
 - · keeps track on each participant
 - corrolation and synchronization of media streams
 - different streams may have different clocks
 - optional, minimal session control information
- RTCP is an outband control protocol
 - if RTP connection in UDP port N $\Rightarrow\,$ RTCP in port N+1

RTCP (cont)

- Different packet types
 - sender reports (active senders report transmission and reception statistics)
 - receiver reports (as above, used by those who don't send)
 - source descriptions (carry CNAME and other info)
 - application-specific control packets
- If a large session, control traffic may consume a lot of bandwidth
 - RTCP provides a method which tries to limit control traffic to 5%

S-38.188 - Computer Networks - Spring 2003

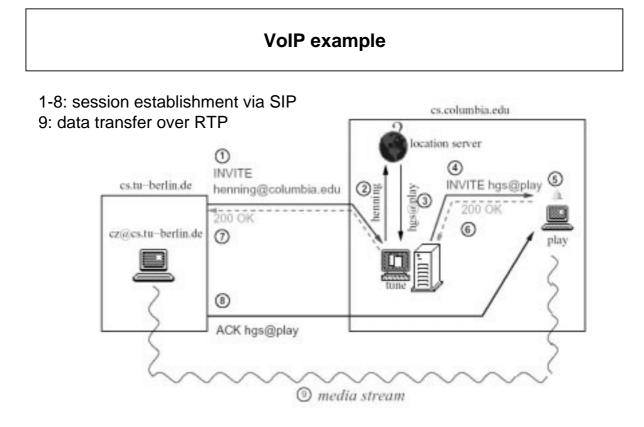
Session Control and Call Control (H.323)

- Session control: how to make information available for holding a videoconference?
 - need to convay, for example, Time, Encoding, multicast IP address, sending data using RTP over UDP port number 4000
 - need protocols for session and call control
 - ITU-T umbrella standard for session and call control: H.323
- Protocols developed in IETF for this purpose
 - SDP (Session Description Protocol)
 - SAP (Session Announcement Protocol)
 - SIP (Session Initiation Protocol)
 - SCCP (Simple Conference Control Protocol)
- Compare:
 - want to announce a conference session (use SDP or SAP)
 - need to send information to a well-known address
 - make an internet phone call (use SDP and SIP)
 - locate users, announce desire to talk, negotiate encoding etc.

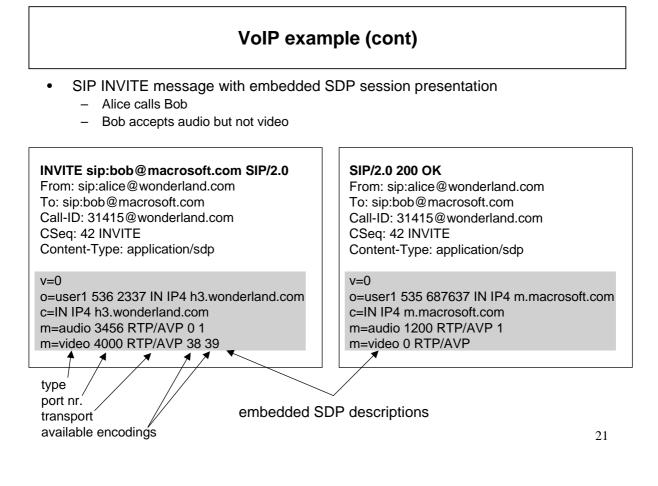
Session Description Protocol (SDP)

- For describing multimedia sessions to do session announcements, session invitations, other session initiations
- General purpose: does not support negotiation of session content or media encodings
- Contains: name and purpose of session, session time, media and address, required bandwidth, connection information
- Usage:
 - VoIP phone calls
 - multicast session description (session content)
 - SAP used for multicast announcements

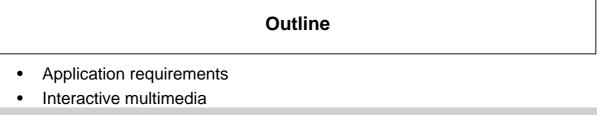
S-38.188 - Computer Networks - Spring 2003


Session Initiation Protocol (SIP)

- Application-layer protocol that can establish, modify and terminate multimedia sessions (conferences) or Internet telephony calls
 - also media encodings are negotiated
 - Request-response protocol, requests sent by clients and received by servers
 - Can invite participants to unicast or multicast sessions, media and participants can be added to existing sessions
 - Supports name mapping and redirection services, enable personal mobility (personal number)
 - ASCII protocol, transport onn top of UDP
- Designed as a part of overall IETF multimedia data and control architecture (RSVP, RTP, RTSP, SAP, SDP)
 - functionality or operation does not depend on any these protocols
 - for example, any session description format can be used
 - in practice, SDP is used exclusively (SDP lists media types and the supported encodings)
- SIP does not
 - offer conference control services
 - allocate multicast addresses
 - reserve network resources (RSVP)

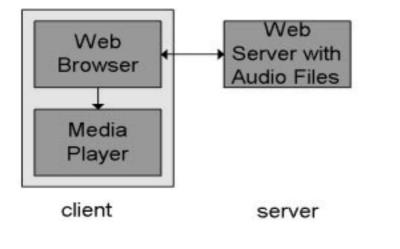

SIP methods

- INVITE : invites a user to a conference
- BYE : terminates a connection between two users in a conference
- OPTIONS : requests information about capability
- ACK : used for reliable message exchange
- REGISTER : conveys location info to a SIP server


S-38.188 - Computer Networks - Spring 2003

H. Schulzrinne and J. Rosenberg, "Internet Telephony: Architecture and Protocolsan IETF Perspective", available from http://www.cs.columbia.edu/~hgs/

S-38.188 - Computer Networks - Spring 2003

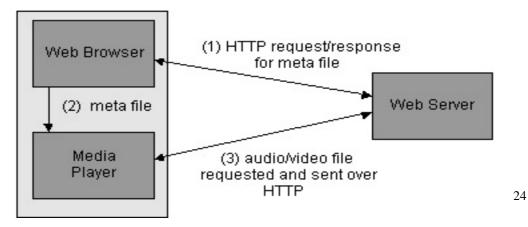


• Streaming multimedia

Internet multimedia: simplest approach

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cmpsci_591_453/

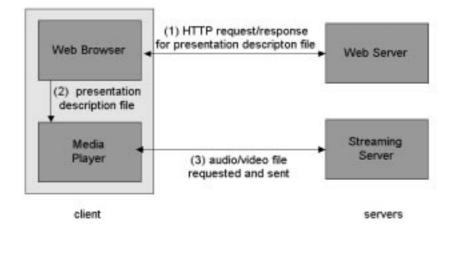
- Audio or video stored in file
- Files transferred as HTTP object
 - received in entirety at client
 - then passed to player
- Audio, video not streamed:
 - no, "pipelining," long delays until playout!


23

S-38.188 - Computer Networks - Spring 2003

Internet multimedia: streaming approach

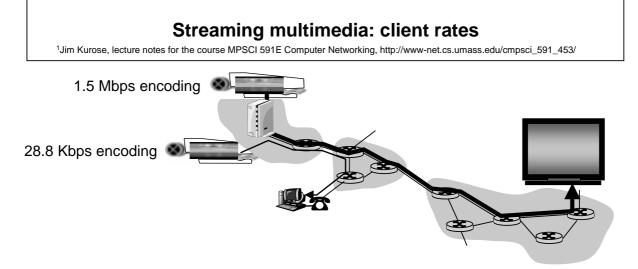
¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cmpsci_591_453/


- Browser GETs metafile
 - metafile tells type of media (application) and URL of the actual media file
- Browser launches player, passing metafile
- Player contacts server
- Server streams audio/video to player
 - streaming by using HTTP over TCP => can not send stream control commands to server (rewind, stop, pause, ...)

Streaming from a streaming server

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cmpsci_591_453/

- This architecture allows for non-HTTP protocol between server and media player
 - can have a richer control protocol for media streams
- Can also use UDP instead of TCP for data transport


S-38.188 - Computer Networks - Spring 2003

Streaming multimedia: UDP or TCP?

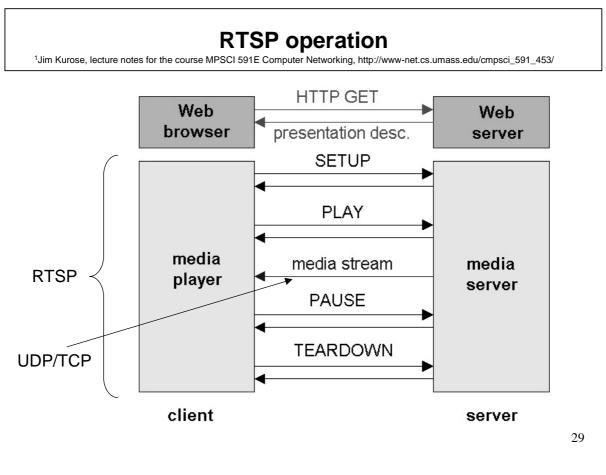
¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cmpsci_591_453/

- UDP
 - server sends at rate appropriate for client
 - with no regard to network congestion
 - short playout delay (2-5 seconds) to compensate for network delay jitter
 - error recover: time permitting
- TCP
 - send at maximum possible rate under TCP
 - congestion loss: retransmission, rate reductions
 - depending on playout delay, retransmissions may even be "too late" and thus unnecessary
 - needs larger playout delay to eliminate effects of sending rate fluctuations

25

- Question: How to handle different client receive rate capabilities?
 - 28.8 Kbps dialup
 - 100Mbps Ethernet
- Answer: server stores, transmits multiple copies of video, encoded at different rates

27


S-38.188 - Computer Networks - Spring 2003

User control of streaming multimedia

¹Jim Kurose, lecture notes for the course MPSCI 591E Computer Networking, http://www-net.cs.umass.edu/cmpsci_591_453/

- Real Time Streaming Protocol (RTSP): RFC 2326
 - user control: rewind, FF, pause, resume, etc...
 - out-of-band protocol:
 - one port (544) for control msgs
 - one port for media stream
 - TCP or UDP for control msg connection
- Scenario:
 - metafile communicated to web browser
 - browser launches player
 - player sets up an RTSP control connection, data connection to server

S-38.188 - Computer Networks - Spring 2003

