## Packet Switching Techniques

## Problem

- Aim: Build larger networks connecting more users
- also spanning different network technologies

- Shared media networks
- limited number of stations that can be connected
- limited geographical coverage
- Solution: switched networks
- review general switching technologies
- extending LANs through LAN switches (bridges, Ethernet switches)


## Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN


## Scalable networks

- Switch
- provides star topology
- forwards (switches) packets from input port to output port
- ports terminate link layer protocols (T1, T3, STM-n)
- port selected based on address in packet header

- Advantages
- can cover large geographic area (tolerate latency)
- can support large numbers of hosts (scalable bandwidth)
- in Ethernet adding new hosts decreases bandwidth available to users


## Switching methods and addressing

- Switching/forwarding
- systematic process of determining to which output port a packet is sent based on packet's header
- different techniques to achieve this
- source routing model
- connectionless (datagram) model
- connection oriented (virtual circuit) model
- Requires method to identify end hosts
- done by using addressing
- here it is assumed hosts have globally unique addresses (telephone number, Ethernet)
- in Internet addresses can be "reused" (discussed in lectures on routing)


## Source routing



- Every packet contains full path information
- headers of variable length
- nodes must have all topology information (not scalable)
- Source routing can be used in Internet



## Datagram switching

- Each packet contains complete destination address
- Analogy: postal system
- No notion of connections
- network does not store any state
- Switches (routers) maintain routing tables
- packets routed independently
- constructing routing tables difficult for complex networks


7

## Virtual circuit (VC) switching

- Connection setup phase before information transfer
- VCs can be
- permanent (nw mgmt)
- on-demand (signaling)
- Connection set up (on-demand)

- along forward path, each switch decides VC identifier (VCI) and forwards request
- along reverse path, nodes inform upstream nodes of chosen VCl values
- VCIs local identifiers, may change from link to link
- switches maintain VCI tables and store connection state
- Information transfer
- subsequent packets follow same path
- Connection tear down after transfer over
- Analogy: telephone call


## Features of VC switching

- Source must wait full RTT before sending any data (VC set up delay)
- While the connection request contains the full address for destination, each data packet contains only a small identifier
- per-packet header overhead smaller than in datagram switching
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources
- in POTS/cellular networks it is checked if time slot is available or not
- In general, it can be checked if enough bandwidth/buffer resources exist and if users' delay requirements can be met
- Examples: POTS network, cellular networks, Frame Relay, ATM


## Features of datagram switching

- No connection set up delay
- host can send data as soon as it is ready
- network does not need to store connection state
- As a result, source can not know
- if the network is capable of delivering a packet
- if the destination host is even up
- Packets are treated independently
- it is possible to route around link and node failures
- important e.g. in military environment (ARPANET developed for military)
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model
- forwarding based on global addresses more resource consuming


## Traffic control and switching techniques

- Congestion
- packets arrive at a rate greater than link speed $\Rightarrow$ buffer fills up
- Preventive traffic control
- network attempts to ensure that congestion does not occur by allocating resources to VCs
- circuit switching model
- may result in poor resource utilization (if VCs exhibit random behavior)
- Reactive traffic control
- network tries to recover from congestion as fast as possible
- datagram switching model
- achieves better utilization since resources are not dedicated to any particular connection, resources shared among all (statistical multiplexing)


## Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN


## Extending LANs

- A single LAN
- all stations on the LAN share bandwidth
- limited geographical coverage (Ethernet 2500 m)
- = single collision domain
- nof stations limited
- Techniques:
- hubs
- bridges
- Ethernet switches


## Hubs

- Layer 1 device
- repeats received bits on one interface to all other interfaces (repeaters)
- Hubs can be arranged in hierarchy
- provides star topology
- Each connected LAN referred to as LAN segment
- Hubs do not isolate collision domains
- collisions may happen with any node on any segment



## Hubs: advantages and limitations

- Hub advantages:
- simple, inexpensive device
- hierarchy provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
- extends maximum distance between node pairs (100m per Hub)
- Hub limitations:
- single collision domain results in no increase in max throughput
- multi-tier throughput same as single segment throughput
- individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)


## Simple bridges

- Connect two or more LANs with a bridge
- Simple bridge
- all packets from a particular port forwarded on all other ports
- level 2 forwarding/switching (does not add packet header)
- isolates collision domains
- Ethernet bridge uses CSMA/CD to transmit packets onto connected LANs



## Learning bridges

- Idea: forward only when necessary
- bridges maintain forwarding tables
- datagram switching on layer 2
- Dynamic algorithm
- bridge examines source address of each packet seen on a port
- addresses saved in a table
- table entries have time outs (if host moves from one segment to another)
- broadcast frames always forwarded
- Table is an optimization; need not be complete


| Host | Port |
| :---: | :---: |
| A | 1 |
| B | 1 |
| C | 1 |
| X | 2 |
| Y | 2 |
| Z | 2 |

## Spanning tree algorithm

- Problem: loops in topology
- loops used to provide redundancy in case of link failure
- Bridges run a distributed spanning tree algorithm
- selects which bridges actively forward traffic
- subset of network graph representing a tree that spans all nodes
- dynamic algorithm: tree reconfigures when topology changes
- developed by Radia Perlman
- now IEEE 802.1 specification



## Algorithm overview

- Bridges have unique ids (B1, B2, etc.)
- Bridge with smallest id is root
- root forwards all traffic onto all ports
- Select designated bridge on each LAN
- LAN may be connected to many bridges
- bridge "closest" (=min nof hops) to root selected as designated bridge
- id used to break ties
- Each bridge forwards frames over each LAN for which it is the designated bridge
- Dynamic (survives link failures), but not able to utilize multiple paths during congestion


19

## Algorithm details

- Bridges exchange configuration messages containing
- id for bridge sending the message
- id for what the sending bridge believes to be root bridge
- distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
- identifies root with smaller id
- identifies root with same id but with shorter distance
- root id and distance are same but sending bridge has smaller id
- Initially, each bridge believes it is the root
- When learn not root, stop generating config messages
- in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages
- in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
- If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root


## Algorithm example

- (Y, d, X): Message from X, at distance $d$ from root $Y$
- Consider node B3:

1 B3 receives (B2, 0, B2)
$22<3$, B3 accepts B2 as root
3 B3 increments d and sends (B2, 1, B3) towards B5
4 B2 accepts B1 as root (lower id) and sends (B1, 1, B2) towards B3
5 B5 accepts B1 as root and sends (B1, 1, B5) towards B3
6 B3 accepts B1 as root, notes that B2 and B5 are closer to root $\Rightarrow$ stop


21

## Broadcast and Multicast

- Forward all broadcast/multicast frames
- current practice
- Possible optimization for multicast:
- learn when no group members downstream (similarly as in learning bridges)
- typically group members are not sending any traffic
- accomplished by having each member of group $G$ send a frame to bridge multicast address with $G$ in source field
- not widely deployed



## Bridges: advantages and limitations

- Advantages:
- isolates collision domains (higher throughput than when using hubs)
- can connect multiple LAN types (different Ethernets, Token Rings)
- transparent: no need for any changes in end hosts
- used to build network of "tens" of LAN segments within e.g. a campus area
- Limitations:
- scalability:
- spanning tree algorithm does not scale
- broadcast does not scale (VLANs can be used to alleviate)
- heterogeneity: not all network technologies use 48 bit addresses
- Caution: beware of transparency
- in an extended LAN, there may be congestion, larger delays, ...
- end host applications should not assume that all is behind a single LAN


## Ethernet switches

- Layer 2 forwarding and filtering using LAN addresses
- Uses switching (frames can be sent in parallel between multiple ports)
- Can accommodate large number of interfaces
- mix of 10/100/1000 Mbit Ethernets
- shared (multiple hosts) or dedicated (single host) Ethernets
- Common configuration
- star topology: hosts connected to switch
- Ethernet, but no collisions!



## Building a campus area network



## Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN


## History

- Traditionally: dedicated networks for different services
- For example: telephone, telex, data, broadcast networks
- Optimized for the corresponding service
- Need for integration of all services into a single ubiquitous network
- "One policy, one system, universal service" (T. Vail, AT\&T's first president)
- Early 80's: Research on Fast Packet Switching started
- Answer from the "Telecom World" : B-ISDN
- 1985: B-ISDN specification started by Study Group SGXVIII of CCITT
- 1988: Approval of the first B-ISDN recommendation (I.121) by CCITT
- idea: replace old PSTN network with new one
- Chosen implementation method: ATM
- 1990: ATM chosen for the final transfer mode for B-ISDN by CCITT
- 1991: ATM Forum founded
- to accelerate development of ATM standards
- to take into account needs of the "Computer World"


## Design objectives

- Flexibility
- integration of different types of traffic (like voice, data and video) into a single network
- supporting any transmission rate (even variable)
- combination of best properties of circuit and packet switching
- Guaranteed Quality of Service (QoS)
- end-to-end delay, delay variation, cell loss ratio
- Scalability
- suitable for both WAN and LAN
- Fastness
- both in switching and transmission $\Rightarrow$ broadband
- Supports multiple physical layers
- typically used over SDH (SONET)
- Minimal error correction (only header protected by check sum)
- very low bit error rates on optical links


## ATM

- Connection oriented:
- virtual connections set up end-to-end before information transfer
- Q. 2931 signaling protocol
- resource reservation possible but not mandatory
- All information carried in short, fixed-length packets (cells)
- along the route chosen for that virtual connection
- statistical multiplexing at nodes
- identifier label (local address) at cell header
- no error detection/recovery for the information field



## Technical choices

- Connection oriented
$\Rightarrow$ resource reservation possible
$\Rightarrow$ guaranteed QoS possible
- Packet switching
$\Rightarrow$ statistical multiplexing
$\Rightarrow$ flexibility (any bit rate possible) and efficiency (high utilization)
- Packets small and fixed-length (cells)
$\Rightarrow$ cell switching
$\Rightarrow$ fast switching, easier to implement in hardware


## Cell

- Cell = short, fixed-length packet
- Total length = 53 bytes (octets)
- Header: 5 bytes

- GFC, generic flow control (4 [0] bits at UNI [NNI]), (not used)
- VPI, virtual path identifier (8 [12] bits $\Rightarrow 256$ [4096] values)
- VCI, virtual channel identifier ( 16 bits $\Rightarrow 65,536$ values)
- PT, payload type (3 bits)
- 4 values ( 1 xy ) used for management functions
- user data = 0xy, x used for EFCI (ABR), y=delineate AAL5 frames
- CLP, cell loss priority (1 bit)
- HEC, CRC-8 header error control (8 bits)
- Information field: 48 bytes
- carried transparently, without error detection/recovery


## Virtual connections

- Basic connection: Virtual Channel Connection (VCC)
- identified by the VPI/VCI pair (24 [28] bits) in each cell header - max. 16,777,216 [268,435,456] VCCs per physical link
- VPI and VCI fields are local labels
$\Rightarrow$ reuse possible in different physical links $\Rightarrow$ scalability
- Aggregated connection: Virtual Path Connection (VPC)
- identified by the VPI field (8 [12] bits) in each cell header
- max. 256 [4096] VPCs per physical link
- consists of the VCCs with the same VPI (can be switched together!)

Physical link


## Virtual paths

- Pros
- faster connection establishment
- easier network management
- differentiated QoS possible
- virtual networks possible
- Cons
- reduced statistical multiplexing gain



## Variable vs. fixed length packets

- No optimal length
- if small: high header-to-data overhead
- but e.g. traditional telephone calls generate small sized packets
- ATM intended to carry all traditional voice traffic effectively
- if large: low utilization for small messages
- but, in computer networking packets are typically large
- Fixed length packets easier to switch in hardware
- in 80's a lot of effort put into designing hw for switching fixed size packets
- simpler to implement than variable size packet switching
- can utilize parallelism in switch design (switches operate based on "slotted" time)


## Big vs. small packets (1)

- Small improves queue behavior
- finer-grained pre-emption point for scheduling link
- maximum packet $=4 \mathrm{~KB}$
- link speed $=100 \mathrm{Mbps}$
- transmission time $=4096 \times 8 / 100=327.68 u s$
- high priority packet may sit in the queue 327.68us
- in contrast, $53 \times 8 / 100=4.24$ us for ATM
- near cut-through behavior
- two 4KB packets arrive at same time
- link idle for 327.68 us while both arrive
- at end of 327.68us, still have 8KB to transmit
- in contrast, can transmit first cell after 4.24us
- at end of 327.68 us, just over 4 KB left in queue


## Big vs. small packets (2)

- Small improves latency (for voice)
- voice digitally encoded at 64 KBps ( 8 -bit samples at 8 KHz )
- need full cell's worth of samples before sending cell
- example: 1000-byte cells implies 125 ms per cell (too long)
- smaller latency implies no need e.g. for echo cancellors
- ATM compromise: 48 bytes $=(32+64) / 2$
- Europe: 32 bytes
- USA: 64 bytes


## Segmentation and reassembly (SAR)

- Problem: higher layer frames longer than 48 bytes
- frames need to fragmented and reassembled
- ATM Adaptation Layer (AAL)
- AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
- AAL $3 / 4$ designed for packet data
- AAL 5 is an alternative standard for packet data



## AAL5

- Problems with AAL 3/4
- complex, too much protocol overhead
- 44 bytes of 48 available for splitting AAL $3 / 4$ frame into cells
- 4 bytes used for segmentation header (enables multiplexing, CRC-10)
- AAL 5
- all 48 bytes available for AAL 5 frame segmentation, no multiplexing
- in practice, AAL 5 is used (AAL $3 / 4$ not)
- CS-PDU format (CS-PDU = AAL 5 frame, CS=Convergence Sublayer)

| < 64 KB | 0-47 bytes |  | 16 | 32 |
| :---: | :---: | :---: | :---: | :---: |
| Data | Pad | Reserved | Len | CRC-32 |

- pad so trailer always falls at end of ATM cell
- length: size of PDU (data only)
- CRC-32 (detects missing or misordered cells)
- Cell Format
- end-of-PDU bit in Type field of ATM header


## Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN


## Historical perspective

- ATM also intended for LAN environment
- switched technology offers better scalability
- aimed to operate at link speeds of 155 Mbps and above (faster than 10BaseT)
- idea: ATM replaces Ethernet and Token ring
- ...but 100BaseT Ethernet and Ethernet switches appeared (almost same speed as ATM)
- ATM in the LAN backbone
- does not have distance limitations
- link speeds above 622 Mbps
- hosts connected to Ethernet switches, ATM in backbone
- ... but now Gigabit Ethernet competes with ATM in backbone


## Problems with ATM in LAN

- Broadcast (and multicast) crucial for LAN operation
- easily implemented in shared media LANs (Ethernet)
- but, ATM is connection oriented and switched in nature ...
- broadcast important for ARP (Address Resolution Protocol)
- Two approaches
- ATMARP: does not make assumptions on existence of broadcast
- ATM LANE (LAN Emulation): makes ATM behave like shared media LAN
- adds number of functional entities to network to make an illusion of shared medium, does not add functionality to ATM switches
- LEC = LAN Emulation Client (host connected to ATM LAN)
- Servers: LECS (LANE Configuration Server), LES (LANE Server), BUS (Broadcast and Unknown Server)
- Problem with addresses:
- ATM uses NSAP or E. 164 addresses, different than 48 bit MAC addresses
- to make ATM work in LAN environment each ATM device needs a MAC address also


## Overview of LANE (1)

- Joining the LAN and setting up broadcast
- new client (H2) contacts LECS using "a well known" VC (1)
- H2 provides LECS with its address and receives configuration information about the LAN and learns ATM address of LES
- H2 contacts LES and provides its ATM address and MAC address, H2 learns ATM address of BUS (2)
- BUS maintains single point-tomultipoint connection connecting all registered clients

- H2 signals to BUS (3)
- H 2 is added to the multipoint connection (4)


## Overview of LANE (2)

- Delivery of unicast traffic to a particular MAC address
- H2 wants to send to H1
- H2 does not know ATM address of H1
- first packets sent directly to BUS (1)
- H2 sends request to LES, LES returns ATM address corresponding to the MAC address (2)
- H2 signals a VC directly to H1 (3)
- old unused VCs time out and are disconnected automatically


