

Packet Switching Techniques

188lecture3.ppt

© Pasi Lassila

1

- Aim: Build larger networks connecting more users
 - also spanning different network technologies

- Shared media networks
 - limited number of stations that can be connected
 - limited geographical coverage
- Solution: switched networks
 - review general switching technologies
 - extending LANs through LAN switches (bridges, Ethernet switches)

Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN

3

S-38.188 - Computer Networks - Spring 2003

· in Ethernet adding new hosts decreases bandwidth available to users

Switching methods and addressing

- Switching/forwarding
 - systematic process of determining to which output port a packet is sent based on packet's header
 - different techniques to achieve this
 - source routing model
 - connectionless (datagram) model
 - connection oriented (virtual circuit) model
- Requires method to identify end hosts
 - done by using addressing
 - here it is assumed hosts have globally unique addresses (telephone number, Ethernet)
 - in Internet addresses can be "reused" (discussed in lectures on routing)

S-38.188 - Computer Networks - Spring 2003

Features of VC switching

- Source must wait full RTT before sending any data (VC set up delay)
- While the connection request contains the full address for destination, each data packet contains only a small identifier
 - per-packet header overhead smaller than in datagram switching
- If a switch or a link in a connection fails, the connection is broken and a new one needs to be established.
- Connection setup provides an opportunity to reserve resources
 - in POTS/cellular networks it is checked if time slot is available or not
 - In general, it can be checked if enough bandwidth/buffer resources exist and if users' delay requirements can be met
- Examples: POTS network, cellular networks, Frame Relay, ATM

S-38.188 - Computer Networks - Spring 2003

Features of datagram switching

- No connection set up delay
 - host can send data as soon as it is ready
 - network does not need to store connection state
- As a result, source can not know
 - if the network is capable of delivering a packet
 - if the destination host is even up
- Packets are treated independently
 - it is possible to route around link and node failures
 - important e.g. in military environment (ARPANET developed for military)
- Since every packet must carry the full address of the destination, the overhead per packet is higher than for the connection-oriented model
 - forwarding based on global addresses more resource consuming

Traffic control and switching techniques

Congestion

- packets arrive at a rate greater than link speed \Rightarrow buffer fills up
- Preventive traffic control
 - network attempts to ensure that congestion does not occur by allocating resources to VCs
 - circuit switching model
 - may result in poor resource utilization (if VCs exhibit random behavior)
- Reactive traffic control
 - network tries to recover from congestion as fast as possible
 - datagram switching model
 - achieves better utilization since resources are not dedicated to any particular connection, resources shared among all (statistical multiplexing)

S-38.188 - Computer Networks - Spring 2003

Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN

Extending LANs

- A single LAN
 - all stations on the LAN share bandwidth
 - limited geographical coverage (Ethernet 2500 m)
 - = single collision domain
 - nof stations limited
- Techniques:
 - hubs
 - bridges
 - Ethernet switches

Hubs: advantages and limitations

- Hub advantages:
 - simple, inexpensive device
 - hierarchy provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
 - extends maximum distance between node pairs (100m per Hub)
- Hub limitations:
 - single collision domain results in no increase in max throughput
 - multi-tier throughput same as single segment throughput
 - individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
 - cannot connect different Ethernet types (e.g., 10BaseT and 100baseT)

S-38.188 - Computer Networks - Spring 2003

Simple bridges

- Connect two or more LANs with a bridge
- Simple bridge
 - all packets from a particular port forwarded on all other ports
 - level 2 forwarding/switching (does not add packet header)
 - isolates collision domains
 - Ethernet bridge uses CSMA/CD to transmit packets onto connected LANs

Learning bridges

- · Idea: forward only when necessary
 - bridges maintain forwarding tables
 - datagram switching on layer 2
- Dynamic algorithm
 - bridge examines source address of each packet seen on a port
 - addresses saved in a table
 - table entries have time outs (if host moves from one segment to another)
 - broadcast frames always forwarded
- Table is an optimization; need not be complete

17

Algorithm overview

- Bridges have unique ids (B1, B2, etc.)
- Bridge with smallest id is root
 root forwards all traffic onto all ports
- Select designated bridge on each LAN
 - LAN may be connected to many bridges
 - bridge "closest" (=min nof hops) to root selected as designated bridge
 - id used to break ties
- Each bridge forwards frames over each LAN for which it is the designated bridge
- Dynamic (survives link failures), but not able to utilize multiple paths during congestion

19

S-38.188 - Computer Networks - Spring 2003

Algorithm details

- Bridges exchange configuration messages containing
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current best configuration message for each port
 - identifies root with smaller id
 - identifies root with same id but with shorter distance
 - root id and distance are same but sending bridge has smaller id
- Initially, each bridge believes it is the root
- When learn not root, stop generating config messages
 - in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages
 - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
 - If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root

Algorithm example

- (Y, *d*, X): Message from X, at distance *d* from root Y
- Consider node B3:
- 1 B3 receives (B2, 0, B2)
- 2 2 < 3, B3 accepts B2 as root
- 3 B3 increments d and sends (B2, 1, B3) towards B5
- 4 B2 accepts B1 as root (lower id) and sends (B1, 1, B2) towards B3
- 5 B5 accepts B1 as root and sends (B1, 1, B5) towards B3

Bridges: advantages and limitations

- Advantages:
 - isolates collision domains (higher throughput than when using hubs)
 - can connect multiple LAN types (different Ethernets, Token Rings)
 - transparent: no need for any changes in end hosts
 - used to build network of "tens" of LAN segments within e.g. a campus area
- Limitations:
 - scalability:
 - spanning tree algorithm does not scale
 - broadcast does not scale (VLANs can be used to alleviate)
 - heterogeneity: not all network technologies use 48 bit addresses
- Caution: beware of transparency
 - in an extended LAN, there may be congestion, larger delays, ...
 - end host applications should not assume that all is behind a single LAN

23

S-38.188 - Computer Networks - Spring 2003

Ethernet switches

- Layer 2 forwarding and filtering using LAN addresses
- Uses switching (frames can be sent in parallel between multiple ports)
- Can accommodate large number of interfaces
 - mix of 10/100/1000 Mbit Ethernets
 - shared (multiple hosts) or dedicated (single host) Ethernets
- Common configuration
 - star topology: hosts connected to switch
 - Ethernet, but no collisions!

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN

History

- Traditionally: dedicated networks for different services
 - For example: telephone, telex, data, broadcast networks
 - Optimized for the corresponding service
- Need for integration of all services into a single ubiquitous network
 - "One policy, one system, universal service" (T. Vail, AT&T's first president)
 - Early 80's: Research on Fast Packet Switching started
- Answer from the "Telecom World" : B-ISDN
 - 1985: B-ISDN specification started by Study Group SGXVIII of CCITT
 - 1988: Approval of the first B-ISDN recommendation (I.121) by CCITT
 - idea: replace old PSTN network with new one
- Chosen implementation method: ATM
 - 1990: ATM chosen for the final transfer mode for B-ISDN by CCITT
 - 1991: ATM Forum founded
 - to accelerate development of ATM standards
 - to take into account needs of the "Computer World"

27

S-38.188 - Computer Networks - Spring 2003

Design objectives

- Flexibility
 - integration of different types of traffic (like voice, data and video) into a single network
 - supporting any transmission rate (even variable)
 - combination of best properties of circuit and packet switching
- Guaranteed Quality of Service (QoS)
 - end-to-end delay, delay variation, cell loss ratio
- Scalability
 - suitable for both WAN and LAN
- Fastness
 - both in switching and transmission \Rightarrow broadband
- Supports multiple physical layers
 - typically used over SDH (SONET)
- Minimal error correction (only header protected by check sum)
 - very low bit error rates on optical links

ATM Connection oriented: В virtual connections set up end-to-end before information transfer Q.2931 signaling protocol - resource reservation possible but not mandatory All information carried in short, fixed-length packets (cells) along the route chosen for that virtual connection statistical multiplexing at nodes - identifier label (local address) at cell header no error detection/recovery for the information field

S-38.188 - Computer Networks - Spring 2003

Technical choices

- Connection oriented
 - \Rightarrow resource reservation possible
 - \Rightarrow guaranteed QoS possible
- Packet switching
 - \Rightarrow statistical multiplexing
 - \Rightarrow flexibility (any bit rate possible) and efficiency (high utilization)
- Packets small and fixed-length (cells)
 - \Rightarrow cell switching
 - \Rightarrow fast switching, easier to implement in hardware

31

Virtual paths

- Pros
 - faster connection establishment
 - easier network management
 - differentiated QoS possible
 - virtual networks possible
- Cons
 - reduced statistical multiplexing gain

S-38.188 - Computer Networks - Spring 2003

Variable vs. fixed length packets

- No optimal length
 - if small: high header-to-data overhead
 - but e.g. traditional telephone calls generate small sized packets
 - ATM intended to carry all traditional voice traffic effectively
 - if large: low utilization for small messages
 - but, in computer networking packets are typically large
- Fixed length packets easier to switch in hardware
 - in 80's a lot of effort put into designing hw for switching fixed size packets
 - simpler to implement than variable size packet switching
 - can utilize parallelism in switch design (switches operate based on "slotted" time)

Big vs. small packets (1)

- Small improves queue behavior
 - finer-grained pre-emption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
 - near cut-through behavior
 - two 4KB packets arrive at same time
 - link idle for 327.68us while both arrive
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue

S-38.188 - Computer Networks - Spring 2003

Big vs. small packets (2)

- Small improves latency (for voice)
 - voice digitally encoded at 64KBps (8-bit samples at 8KHz)
 - need full cell's worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need e.g. for echo cancellors
- ATM compromise: 48 bytes = (32+64)/2
 - Europe: 32 bytes
 - USA: 64 bytes

Segmentation and reassembly (SAR)

- Problem: higher layer frames longer than 48 bytes
 - frames need to fragmented and reassembled
- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

37

Outline

- General switching techniques
- Bridges and LAN switches
- ATM technology
- ATM in LAN

39

Problems with ATM in LAN

- Broadcast (and multicast) crucial for LAN operation
 - easily implemented in shared media LANs (Ethernet)
 - but, ATM is connection oriented and switched in nature ...
 - broadcast important for ARP (Address Resolution Protocol)
- Two approaches
 - ATMARP: does not make assumptions on existence of broadcast
 - ATM LANE (LAN Emulation): makes ATM behave like shared media LAN
 - adds number of functional entities to network to make an illusion of shared medium, does not add functionality to ATM switches
 - LEC = LAN Emulation Client (host connected to ATM LAN)
 - Servers: LECS (LANE Configuration Server), LES (LANE Server), BUS (Broadcast and Unknown Server)
- Problem with addresses:
 - ATM uses NSAP or E.164 addresses, different than 48 bit MAC addresses
 - to make ATM work in LAN environment each ATM device needs a MAC address also

41

S-38.188 - Computer Networks - Spring 2003

Overview of LANE (1)

- Joining the LAN and setting up broadcast
 - new client (H2) contacts LECS using "a well known" VC (1)
 - H2 provides LECS with its address and receives configuration information about the LAN and learns ATM address of LES
 - H2 contacts LES and provides its ATM address and MAC address, H2 learns ATM address of BUS (2)
 - BUS maintains single point-tomultipoint connection connecting all registered clients
 - H2 signals to BUS (3)
 - H2 is added to the multipoint connection (4)

Overview of LANE (2)

- Delivery of unicast traffic to a particular MAC address
 - H2 wants to send to H1
 - H2 does not know ATM address of H1
 - first packets sent directly to BUS (1)
 - H2 sends request to LES, LES returns ATM address corresponding to the MAC address (2)
 - H2 signals a VC directly to H1 (3)
 - old unused VCs time out and are disconnected automatically

