EXERCISES S-38.215: WEEK 5

Exercise 12:

Consider the fluid model for the TCP source described in the lecture of this week. Assume that the TCP source can only be in two states $(S = \{1,2\})$ and that r < c < 2r. Show that

$$F_{1}(y) = F_{1}(K) \cdot e^{\theta(y-K)},$$

$$F_{2}(y) = F_{1}(K) \cdot \frac{c-r}{2r-c} \left[e^{\theta(y-K)} - e^{-\theta K} \right],$$

where $\theta = \lambda/(c-r)$ and

$$F_1(K) = \frac{\mu}{\lambda + \mu} \left[1 + \frac{\mu}{\lambda + \mu} \frac{c - r}{2r - c} (1 - e^{-\theta K}) \right]^{-1}$$

Furthermore, show that the fraction of time that the buffer is congested is given by $\lambda F_1(K)/\mu$.

Exercise 13:

Consider the basic fluid queue model with inflow regulated by an on-off source. Discuss what the effect on the buffer content is if the on-periods are given by

- a sum of a regularly varying period with index $-\nu_1$ and a regularly varying period with index $-\nu_2$;
- a mixture of a regularly varying period with index $-\nu_1$ and a regularly varying period with index $-\nu_2$ (i.e. a fraction of the on-periods is regularly varying with index $-\nu_1$ and the remainder of the on-periods is regularly varying with index $-\nu_2$).