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1 Introduction

Notation:Z(t) = content of the buffer at timet.

From the figures one sees that in fluid queue the
inflow and outflow are “gradual”, unlike with
the ordinary M/M/1-queue.

Characteristics:

• Finite or infinite fluid buffer

• Inflow/outflow is regulated by some un-
derlying stochastic process

Measures of interest are

• buffer content distribution

• average buffer content

• overflow probability (finite buffer)

• output process

Z(t)

overflow
−  gradual outflow
−  gradual inflow

Figure 1: Typical fluid queue realization.

N(t)

−  instantaneous inflow
−  instantaneous outflow

U(t)

−  gradual outflow
−  instantaneous inflow

Figure 2: Typical realizations of occupancy and unfinished work in M/M/1 queue.

Applications:

• Real fluid systems

• Systems with small entities, e.g. packets
in communication systems, having (al-
most) deterministic processing times

History:

• Water reservoirs / dams (1960’s)

• Motorway traffic (Newell, 1970’s)

• Production systems

• Communication systems in burst level
(Anick-Mitra-Sondhi, 1982)

Anick-Mitra-Sondhi Model:

• N users which are ON/OFF

• Inflow is proportional to the number of
active users
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2 Mathematical Background

2.1 Differential Equations

Linear differential equation system is
x′(t) = Ax(t), (1)

whereAk×k is a constant matrix andx(t) are the unknown functions.

Theorem 1 Let λ1, . . . ,λk be all the eigenvalues ofA and letv1, . . . ,vn be the corresponding eigen-
vectors. Ifλi 6= λ j for all i 6= j, then the general solution to(1) is,

x(t) = c1 ·v1eλ1t + . . .+ck ·vke
λkt .

2.2 Phase Type Distributions

distribution F(x) f (x) E[X] V [X] c2
X = V[X]

E[X]2

Exponential 1−e−µx µe−µx 1/µ 1/µ2 1

Erlang-r (or Gamma) - µ(µx)r−1

(r−1)! e−µx r/µ r/µ2 1/r < 1

Hyperexponential ∑i piFi(x) ∑i piµie−µix - - > 1

All three distributions above are examples of so calledphase type distributions. Phase type distribu-
tions are characterized by:

• initial distribution(p1, p2, . . . , pN)

• exponential residence times in states with parametersµ1,µ2, . . . ,µN

• transient1 transition probability matrixP

Def 1 (phase type)Random variable X is phase type if it is the residence time of the Markov process
described above.

2.3 Renewal Theory

Let X1,X2, . . . be a sequence of i.i.d. random variables with pdffX(x), and lett be a random point of
time. In a typical exampleXi corresponds to the lifetime of a light bulb.

We have random variables:

• Curr: total lifetime,

• Res: residual lifetime,

• Elaps: elapsed lifetime.

Q: What are pdf’s ofCurr, Res
andElaps?

Elaps Res

Curr

X1 X X2
random point of time

3

Figure 3: Sequence of i.i.d. random variables.

Results from renewal theory:

fCurr(x) =
x· fX(x)

E[X]
⇒ E[Curr] =

E
[
X2

]
E[X]

. (2)

1limn→∞ Pn = 0
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fElaps(x) = fRes(x) =
Z ∞

x

fCurr(y)
y

dy=
1−FX(x)

E[X]
⇒ E[Elaps] = E[Res] =

E
[
X2

]
2E[X]

. (3)

2.4 Queueing Theory

M/G/1 queue:

• Interarrival times are exponentially distributed withλ, andAi ∼ Exp(λ)

• Service timesSi are i.i.d. with some mean E[S] and the second moment E
[
S2

]
• Single server capable of doing one unit of work per unit time

• Infinite number of waiting places

• Stability: ρ := λE[S] < 1

(Little’s theorem:N = λT. average occupancy = arrival intensity times average sojourn time)

Laplace-Stieltjes transform:̃S(s) = E
[
e−sS

]
.

2.4.1 Pollaczek-Khinchine Formulas

• Number of customers in the system,N

pN(z) = ∑
n

P{N = n} ·zn =
(1−ρ)S̃(λ(1−z))(1−z)

S̃(λ(1−z))−z
.

• Waiting time,W

W̃(s) = E
[
e−sW]

=
(1−ρ)s

λS̃(s)+s−λ
.

• Sojourn time,T = W+S

T̃(s) = E
[
e−sT]

=
(1−ρ)sS̃(s)
λS̃(s)+s−λ

.

2.4.2 Mean Value Analysis for M/G/1

Often the mean values are enough. The mean waiting time becomes

E[W] = E
[
Nq

] ·E[S]+ρE[Res] =
ρE[Res]

1−ρ
=

ρ
1−ρ

E
[
S2

]
2E[S]

=
λE

[
S2

]
2(1−ρ)

, (4)

and the average sojourn time is
E[T] = E[W]+E[S] , (5)

and finally by using Little’s theorem for the queue lengthNq gives,

E
[
Nq

]
= λ ·E[W] . (6)
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3 Basic Fluid Model

Assumptions:

• Infinite buffer

• Constant outflow with rate equal to 1

• Inflow regulated by an ON/OFF–source with Exp(µ)-distributed
ON-times, and Exp(λ)-distributed OFF-times (µ> λ)

• During ON times inflow with rate equal to 2, and no inflow during
OFF times

Performance measure: P{Z(t) ≤ x} “in steady-state” or “in the long
run”.

3.1 Continuous Time Approach

First note thatZ(t) alone is not a Markov
process (“direction” matters). However, two-
dimensional process(Z(t), I(t)), whereI(t) is
the state of the source, is a Markov process with
state space[0,∞)×{0,1}.
Denote,

Fi(t,x) := P{Z(t)≤ x, I(t) = i}. 31 41 2 2 3 4Y

-  outflow rate is 1
-  inflow rate is 2 in  ON-state

Y X YX XY X

Z(t)

Then one interesting measure is the steady state distribution, i.e. what happens whent → ∞. From
Fig. one gets for small interval∆, that

F0(t +∆,x) = F0(t,x+∆) · (1−λ∆+O(∆2))+F1(t,x+O(∆))(µ∆+O(∆2)), (7)

F1(t +∆,x) = F1(t,x−∆) · (1−µ∆+O(∆2))+F0(t,x+O(∆))(λ∆+O(∆2)). (8)

From (7) one gets

F0(t +∆,x)−F0(t,x)
∆

+
F0(t,x)−F0(t,x+∆)

∆
=−λF0(t,x+∆)+µF1(t,x+O(∆))+O(∆)),

and as∆→ 0,

∂
∂t

F0(t,x)− ∂
∂x

F0(t,x) =−λF0(t,x)+µF1(t,x).

By doing a similar derivation for (8) one finally gets,

∂
∂t

F0(t,x)− ∂
∂x

F0(t,x) =−λF0(t,x)+µF1(t,x), (9)

∂
∂t

F1(t,x)+
∂
∂x

F1(t,x) = λF0(t,x)−µF1(t,x). (10)
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3.1.1 Steady-state Distribution

It is obvious from the situation that steady-state distribution exists, i.e. there isFi(x) such that,

lim
t→∞

Fi(t,x)→ Fi(x).

In the steady-state the time derivative is zero, i.e.

∂
∂t

Fi(t,x)→ 0, as t→ ∞.

Similarly,
∂
∂x

Fi(t,x)→ F ′i (x), as t→ ∞.

Thus at the limitt→ ∞ one gets

−F ′0(x) =−λF0(x)+µF1(x),
F ′1(x) = λF0(x)−µF1(x),

which in the matrix form becomes,

F′(x) = AF(x), whereF(x) =
(

F0(x)
F1(x)

)
andA =

(
λ −µ
λ −µ

)
. (11)

Theorem 1 gives the general solution for (11). Eigenvalues and corresponding eigenvectors ofA are

λ1 = 0, λ2 = λ−µ and v1 =
(

µ
λ

)
, v2 =

(
1
1

)
,

and thus the general solution for (11) is

F(x) = c1

(
µ
λ

)
+c2

(
1
1

)
e−(µ−λ)x.

Constantsc1 andc2 can be obtained from the boundary conditions:

• Whenx→ ∞ one gets

lim
x→∞

F(x) =
(

P{I = 0}
P{I = 1}

)
=

1
λ+µ

(
µ
λ

)
, and thus c1 = 1/(λ+µ).

• Whenx = 0 the second component ofF(0) must be zero, i.e.F1(0) = 0, because whenI(t) = 1
the buffer content immediately grows bigger than zero. Hence,

F(0) =
(

F0(0)
0

)
=

1
λ+µ

(
µ
λ

)
+c2

(
1
1

)
and hence c2 =− λ

λ+µ
.

Finally the cumulative steady-state distribution becomes,

F(x) =
1

λ+µ

(
µ
λ

)
− λ

λ+µ

(
1
1

)
e−(µ−λ)x. (12)

Especially,

P{Z≤ x}= F0(x)+F1(x) =
λ+µ−2λe−(µ−λ)x

λ+µ
.

The average outflow from the system is, 1·
(

1− µ−λ
λ+µ

)
= 2λ

µ+λ , i.e. equal to the inflow as it should be.
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3.1.2 Probability Flows

The set of differential equations for the steady-
state can be also determined from the Fig. on the
right. Consider the “probability flows” leaving
and entering the red rectangle, i.e.S= [0,x)×
{0}, depicted in the figure. Clearly the flow
leaving the subsetS during a short time inter-
val ∆ is equal to,

F0(x) ·λ∆.
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

I=1

I=0

λµ

buffer content

1

x

Similarly, the probability flow entering the subsetSmust be

F1(x) ·µ∆+F0(x+∆)−F0(x)≈ F1(x) ·µ∆+F ′0(x) ·∆.

In the steady-state the flow leaving and enteringSmust be equal, so combining the above gives,

λF0(x) = µF1(x)+F ′0(x),

which is equivalent to (11). Similar reasoning can be conducted for the subset[0,x)×{1}.

3.2 Discrete Time Approach

Definitions:
Wn: the buffer contentZ(t) at the time of

thenth OFF→ ON switch
Tn: the buffer contentZ(t) at the time of

thenth ON→ OFF switch
21

1
2

1 2 3XX

T

YY

T  = buffer content at ON-to-OFF change
W = buffer content at OFF-to-ON change

W

X

Z(t)

ConsideringWn first gives,

W1 = 0

Wn+1 = max{Wn+Xn−Yn, 0}

which isLindley’s equationfor the waiting time in an ordinary queueing system with service timeXi

and interarrival timesYi . As bothXi ’s andYi ’s are exponentially distributed this corresponds to the
waiting time of M/M/1-queue, and

P{W ≤ x}= (1− λ
µ
)+

λ
µ
(1−e−(µ−λ)x).

ForTn:s one notices thatTn+1 = Wn +Xn = sojourn time for the same M/M/1-queue, and thus

P{T ≤ x}= 1−e−(µ−λ)x.

Consider now an arbitrary point of time,t0:

• With probability ofλ/(λ +µ) the source is in ON-state, and with probability ofµ/(λ +µ) the
source is in OFF-state.

6



• If the source is in ON-state att0, then applying the renewal theory gives,

buffer content
d= W+ElapsX

d= W+X
d= T.

• Similarly, if the source is in OFF-state att0, then

buffer content
d= max{T−ElapsY,0} d= max{T−Y,0} d= W.

Thus one gets,

F0(x) =
µ

λ+µ
·P{W≤ x},

F1(x) =
λ

λ+µ
·P{T ≤ x},

which are equivalent to (12).

3.3 Stochastic Discretization Approach

At the end of ON period add extra portion (bag) of fluid
(exp(µ)).
During OFF period remove bags if they become empty.
Study(N(t), I(t)) instead of(Z(t), I(t)), and do as if it is
a Markov Process (which is not the case).
Flow diagram of(N(t), I(t)) is depicted on the right.
Let p(n, i) be limiting probabilities of the above. Then,

(i) λ · p(n,0) = µp(n+1,0), ∀ n≥ 0,

(ii) µ· p(n,1) = µp(n+1,1), ∀ n≥ 0,
2

1

2

1 2 2 3 3 4 4

1 1 43 43 X YY

X

∆

XYX

YXYX

∆

YX

Y

Y

X

N(t)

Z(t)

⇒ p(n,0) =
(

λ
µ

)n

p(0,0), p(n,1) =
(

λ
µ

)n+1

p(0,0).
(0,0)

(0,1) (2,1)

(2,0)

(1,1)

(1,0)

µ µ
λ λλ

µ µ

⇒ p(0,0) ·
(

∑
n

an+∑
n

an+1
)

= 1, and after some manipulation, p(0,0) =
µ−λ
µ+λ

.

Then, {
(N(t), I(t)),

p(n, i) ⇒ (Z(t), I(t)).

F0(x) = P{Z(t)≤ x, I(t) = 0}
F1(x) = P{Z(t)≤ x, I(t) = 1} ⇒ F0(x) = ∑∞

n=0

I=0︷ ︸︸ ︷
p(n,0) ·P{

Erlangn(µ)︷ ︸︸ ︷
sum ofn Exp(µ)≤ x}

F1(x) = ∑∞
n=0 p(n,1) ·P{Erlangn+1(µ)≤ x}

wheren+1 in the lower Eq. comes from the added current “bag”.

F1(x) =
∞

∑
n=0

µ−λ
µ+λ

(
λ
µ

)n+1

·P{Erlangn+1(µ)≤ x}

=
λ

µ+λ

∞

∑
n=0

µ−λ
µ

(
λ
µ

)n

·P{Erlangn+1(µ)≤ x}︸ ︷︷ ︸
sojourn time in M/M/1-queue

=
λ

µ+λ

(
1−e−(µ−λ)x

)
.
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Similarly,

F0(x) =
∞

∑
n=0

µ−λ
µ+λ

(
λ
µ

)n

·P{Erlangn(µ)≤ x}

=
µ

µ+λ

∞

∑
n=0

µ−λ
µ

(
λ
µ

)n

·P{Erlangn(µ)≤ x}︸ ︷︷ ︸
waiting time in M/M/1-queue

=
µ

µ+λ

(
1− λ

µ
+

λ
µ
(1−e−(µ−λ)x)

)
.

3.3.1 Summary so far

Basic Model:

• infinite buffer size

• constant outflow 1

• inflow alternates between 0 and 2, distributed with Exp(λ) and Exp(µ) respectively

What directions can the model be extended? Different Approaches and their Usage:

I. – finite/infinite buffer model

– process regulating the in/out flow can be any finite state Markov process

II. – useful for non-Markovian processes regulating the inflow of fluid buffer (e.g.X1,X2, . . .
are arbitrary r.v.:s,Y1,Y2, . . . exponentially distributed r.v.:s), (M/G/1 formula)

III. – useful with more than one fluid buffer

3.4 General Model for Approach I

Let:

• u(t) be a finite state Markov process regulating both inflow and outflow:

• Q: infinitesimal generator ofu(t)

• If u(t) = i, then the net flow (inflow-outflow) equals todi

• π: stationary distribution ofu(t)

• ∑i πidi < 0 for stability

• Technical assumption 1:di 6= 0 for all i

• D =




d0 0
d1

...
0 dn


 and Fi(x) = limt→∞ P{Z(t)≤ x, u(t) = i}

These give,

D ·F′(x) = QT ·F(x), whereF(x) =




F0(x)
F1(x)

...
Fn(x)


 .
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For the basic model, (−1 0
0 1

)
·
(

F ′0(x)
F ′1(x)

)
=

(−λ µ
λ −µ

)
·
(

F0(x)
F1(x)

)
.

Technical Assumption 2:All eigenvaluesλ1, . . . ,λn+1 are different.

With these assumptions the general solution is,

F(x) =
n+1

∑
i=1

ci ·vi ·eλix.

Boundary conditions (here we chooseλ1 = 0):

• Infinite buffer case:

– From lim
x→∞

Fi(x) = πi we can findci = 0, if Re(λi) > 0, andc1 follows from lim
x→∞

Fi(x) = πi

– And lim
x→0

Fi(x) = 0 if di > 0, gives the remaining constants

• Finite buffer case:

– lim
x→0

Fi(x) = 0, if di > 0

– lim
x→K

Fi(x) = πi , if di < 0

4 Applications to Communication Systems

In this section the following applications will be studied:

I Traffic Differentiation

II Traffic Shaping

III TCP Source

4.1 Traffic Differentiation (space priority)

• Source producing two types of fluid (e.g. voice and data)

• Both types of fluid are multiplexed in a single finite buffer of sizeK

• Source is regulated by Markov Processu(t) with state space{0, . . . ,N}, infinitesimal generator
matrixQ and limiting distributionπ

• If u(t) = i the source produces typej fluid with rateri, j

• Buffer sharing policy: accept type 2 fluid only ifZ(t) < K∗, i.e. type 1 fluid is more important
(K∗ < K)

• Constant output ratec

• Net input:

d(1)
i = ri1+ ri2−c, whenZ(t) < K∗

d(2)
i = ri1−c, whenZ(t) > K∗

9



• Diagonal matrices:

D(1) =




d(1)
0 0

d(1)
1

...

0 d(1)
n


 and D(2) =




d(2)
0 0

d(2)
1

...

0 d(2)
n


 .

Foe,
Fi(x) = lim

t→∞
P{Z(t)≤ x, u(t) = i},

one obtains the following system of differential equations forFi(x):

D(1)F′(x) = QTF(x), 0 < x < K∗ (13)

D(2)F′(x) = QTF(x), K∗ < x < K (14)

From (13) alone:F(1)(x) =
N

∑
j=0

c(1)
j ·v(1)

j eλ(1)
j x, and from (14) alone:F(2)(x) =

N

∑
j=0

c(2)
j ·v(2)

j eλ(2)
j x.

Proposition 1 The general solution for the above differential equation system is

F(x) =
{

F(1)(x) when0 < x < K∗,
F(2)(x) when K∗ < x < K.

How to determine 2(N+1) constants? (c(1)
j ,c(2)

j , j = 0, . . . ,N)

Split the state spaceS = {0, . . . ,N} to
three subsetsS−,S±,S+:

S− = {i ∈ S : ri1+ ri2−c < 0}
S± = {i ∈ S : ri1+ ri2−c > 0, ri1−c < 0}
S+ = {i ∈ S : ri1−c > 0}

Boundary Conditions:

i) Fi(0) = 0 if d(1)
i > 0, i.e. if i ∈ S±∪S+

ii) Fi(K∗−) = Fi(K∗+) if i ∈ S−∪S+

iii) Fi(K) = πi if d(2)
i < 0, i.e. if i ∈ S−∪S±

In total 2(N+1) boundary conditions and unknown constantsc( j)
i can be determined.

4.2 Traffic Shaping

Bursty traffic is bad for the
network performance, hence
traffic shapers can be used.

Basic types:

i) Spacer

ii) Leaky Bucket

iii) 2-level Shaper

controls max burst size and

controls peak rate

min distance

bucket
leaky

2-level

spacer

input

controls max burst size and
average rate

average rate and peak rate

Figure 4: Behaviour of the different traffic shapers.
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si
ze

 N

output rate v0, v2 or 0
0 < v2 < v0

to
ke

n 
bu

ffe
r

rate 0 or v0
on/off source,

if tokens are available

input rate v2

The cell is transmitted only

cell buf
size M

2
v -

v
02

v - v
2

Cell buffer, Z  (t)

v
2

(1)

v

0

(2)

0

Token buffer, Z  (t)

v ON/OFF source

M

N

Figure 5: Fluid model for leaky bucket traffic shaper.

4.2.1 Fluid Model for Leaky Bucket

As either buffer is always empty in leaky-bucket
shaper, the system can be reduced to one dimen-
sion: Z(t) = Z(2)(t)−Z(1)(t)+N and we get a
basic fluid model with input rate 0 orv0 and out-
put ratev2.

2

v - v
0 2

v
N+M

Z(t)

4.2.2 2-level Shaper

For a 2-level shaper the output rate equals to
v1,v2 or 0, where

0 <

average rate︷︸︸︷
v2 <

peak rate︷︸︸︷
v1 < v0.

As can be seen from the Figure, both buffers can
be non-empty at the same time and the process
cannot be reduced to one dimension.
Adan and Resing discretize one of the fluid
buffers using the stochastic discretization tech-
nique, and the system of pde’s becomes a sys-
tem of ode’s which can be solved.

Token buffer, Z  (t)
(1)

v - v
20

2
v - v

1

v -

Cell buffer, Z  (t)

2

2

v

2

0

v

(2)

1

v

v

ON/OFF source

M

N

4.3 TCP Source

u(t) = state of a TCP source, ifu(t) = i then the output rate isr · i.

Buffer sends positive/negative feedback signals depending on the buffer contentZ(t).

Z(t) < K Positive feedback signals,u(t) increases by one
Positive signals occur at rateλ

Z(t) = K Negative feedback signals,u(t) increases by factor 2:u(t)← bu(t)/2c
Negative signals occur at rateµ.
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“Feedback fluid system”,u(t) regulatesZ(t), but
alsoZ(t) regulatesu(t)!

Example: TCP source withN = 5 and 2r < c< 3r

Notation:di = r · i−c, and
D = diag(d1,d2, . . . ,d5).

exp(µ)
exp(λ)

Z(t)u(t)
r u(t)

source buffer size K

c

Figure 6: Diagram of the TCP source model.

States:S− = {i : di < 0} andS+ = {i : di > 0}. (again,di 6= 0 for all i).

K

c

Z(t)

u(t)

52 3 4

52 3

1

41

λ λ λ λ

µ µ
µ

Z(t) < K

Z(t) = K

Figure 7: Example realization of the TCP source (left) and the state space of the system (right).

Q =



−λ λ

−λ λ
−λ λ

−λ λ
0 0


 and Q̃ =




0 0 0 0 0
0 0 0 0 0
µ 0 −µ 0 0
0 µ 0 −µ 0
0 µ 0 0 −µ


 .

System of differential equations:

D ·F′(x) = QT ·F(x) (like ordinary fluid queue)

as long asZ(t) < K. The general solution,

F(x) =
N

∑
i=1

ci ·vi ·eλix.

Normally the boundary conditions are,

Fi(0) = 0, if i ∈ S+ andFi(K−) = Fi(K), if i ∈ S−.

But what are boundary conditions in this case? (ordinaryFi(K) = πi)

DefineGi = Fi(K)−Fi(K−), i.e.Gi = limt→∞ P{Z(t) = K,u(t) = i}.

For example fori = 4 one then gets,

P{Z(t +∆t) = K,u(t +∆t) = 4}=P{Z(t) = K,u(t) = 4} · (1−µ∆t)
+P{Z(t) ∈ (K−d4 ·∆t,K),u(t) = 4} · (1−λ∆t)

and as∆t goes to zero,

0 =−µG4+d4F ′4(K
−).
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Repeating the same steps for eachi, it turns out that the boundary conditions are of form:

Q̃T ·G+D ·F′(K−) = 0.

Alternatively this can be written as,

Q̃T ·G+QT ·F(K−) = 0.

In total we have 2N unknowns:{ci},{Gi}.

Boundary conditions:
i) Fi(0) = 0, wheni ∈ S+ givesN conditions in total

Gi = 0, wheni ∈ S−

ii) Q̃T ·G+D ·F′(K−) = 0, gives anotherN conditions but one depends on the
other⇒ N−1 conditions

iii) ∑N
i=1Fi(K−)︸ ︷︷ ︸

not full

+ Gi︸︷︷︸
full

= 1, i.e. normalization

Hence, we have in total 2N equations and the unknown constants can be solved.

5 Fluid Models and Heavy Tails

Motivation: file sizes in the Internet have heavy tails, i.e.

P{X > t} ≈C · t−ν, where 1< ν < 2 typically.

Question: what is the effect of heavy tailed file sizes to the buffer content or waiting times?

5.1 Model to be studied

We study the basic fluid model with the following exceptions:

• ON-periodsX1,X2, . . . are heavy tailed

• OFF-periodsY1,Y2, . . . are still exponentially distributed

The basic fluid model was solved with 3 different approach:

I used the fact that everything was exponential,

III also used the fact that everything was exponential.

Hence we are left with the approach II, i.e. the discrete time analysis using the results from the
queueing theory.

5.2 Heavy-tailed Random Variable

There are several formulations for heavy tailedness. Here we use so calledregularly varyingrandom
variables.

13



Def 2 (regularly varying) A function f : R→ R is said to be regularly varying with indexα, if,

lim
x→∞

f (xt)
f (x)

= tα.

Def 3 A random variable X is said to be regularly varying with index−ν if G(x) = P{X > x} is a
regularly varying with index−ν, and is denoted with RV(−ν).

Regularly varying random variables have the following properties:

[RV1] If X is RV(−ν), thenXRes, XElapsandXCurr are RV(1−ν), i.e. have even heavier tail.

[RV2] If X1 andX2 are both RV(−ν) and independent, thenX1+X2 is also RV(−ν).

[RV3] If X1 is RV(−ν1) andX2 is RV(−ν2) and independent, thenX1+X2 is RV(max{−ν1, −ν2}).

From earlier we remember that the analogy was::

• Xi ’s were interarrival times, and

• Yi ’s were service times

First we need the following important result from the queueing theory.

Theorem 2 In M/G/1 queue, where service times are RV(−ν), the waiting time W is RV(1−ν).

This means that the tails of the waiting times are even heavier than the tails of the service times.

Idea of the proof:

P-K formula:W̃(s) = (1−ρ)s
λS̃(s)+s−λ = (1−ρ) 1

1−λE[S]︸ ︷︷ ︸
=ρ

1− S̃(s)
sE[S]︸ ︷︷ ︸
=S̃Res(s)

= (1−ρ) 1
1−ρS̃Res(s)

= (1−ρ)∑∞
n=0 ρn

[
S̃Res(s)

]n
,

and thus,

P{W > t}=
∞

∑
n=0

(1−ρ)ρnP{S(1)
Res+S(2)

Res+ . . .+S(n)
Res> t}

and using [RV1] and [RV2] we get thatW is RV(1−ν).

5.3 From M/G/1 to Fluid Model

For buffer contentZ we have,

Z =

{
W+XElaps, w.p. E[X]

E[X]+E[Y] ,

max{T−YElaps,0}= W, w.p. E[Y]
E[X]+E[Y] .

Both waiting timeW andXElaps are RV(1−ν), and thus the buffer contentZ must be RV(1−ν) as
well.
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