End-to-end IP Service Quality and Mobility - Lecture #1 -

Special Course in Networking Technology S-38.215

vilho.raisanen@nokia.com

Bureaucracy

- 2 study credits.
- Can be used as part of post-graduate studies.
- Prerequisite knowledge: S-38.180 Quality of Service or equivalent knowledge.
- Twelve 90-minute lectures at 10 o'clock on Mondays in lecture room H402.
 - Lecture schedule will be shown in the course home page.
- Course material and exercises will be distributed at lectures.
- Grading based on examination.
- There will be a final examination + another examination later.
 - Dates will be announced on course home page.

Goals of the course

- Understanding of issues which need to be taken into account in providing advanced services in systems supporting IP mobility.
 - GSM evolution systems (GPRS, EDGE, WCDMA).
 - IP-based access networks.
- Systems approach.
 - End-to-end service quality target.
 - System components and protocols needed for this.
- Service-centric viewpoint.
- The course concentrates on service quality aspects of mobility.
 - Also AAA, security etc. need to be taken into account in designing real systems.
 - We shall only cursorily touch these issues.

1. Introduction	Jan 13th
2. Mobile Applications	Jan 20th
3. Service Quality requirement characterizations	(Jan 27 th)
4. Challenges of mobile environment	(Feb 3 rd)
5. Mobility and QoS in GPRS	(Feb 10 th)
6. Mobility and QoS in 3GPP systems	(Feb 17 th)
7. Mobility and QoS with Mobile IP	(Feb 24 th)
8. Mobile IP QoS enhancements	(Mar 3 rd)
9. Edge mobility	(Mar 10 th)
10. Inter-system mobility	(Mar 17 th)
11. End-to-end QoS management	(Mar 31st)
12. Summary	(Apr 7 th)

Course material

- No obligatory course books.
 - Pointers to further material will be included into handouts.
- For more information, the following books are useful:
 - D. Wisely, P. Eardley, and L. Burness: IP for 3G, John Wiley & Sons, Chichester, England, 2002.
 - C.E. Perkins: Mobile IP Design principles and practices, Addison-Wesley, Reading, U.S.A, 1998.
 - H. Holma and A. Toskala: WCDMA for UMTS, John Wiley & Sons, Chichester, England, 2000.
 - V. Räisänen: Implementing Service Quality in IP Networks, John Wiley & Sons, Chichester, England, 2003.
- Standardization material will be referred to where appropriate.

Service quality

- Term "Quality of Service (QoS)" is not well-defined.
- Terms used in this course:
 - **End-to-end service quality**: the result that the user of the service can observe.
 - Affected by all links in the end-to-end service delivery chain.
 - Also affected by psychological factors (e.g., use situation).
 - Service quality support mechanisms: the means of providing controlled end-to-end service quality
- End-to-end service quality is a result of service quality support mechanisms used by different parties.
- Typically devices such as Service Level Agreements (SLAs) need to be used to provide end-to-end service quality.

[ITU-T Rec. G.1000, Räisänen Ch. 2] [Bouch et al., Of Packets and People..., in Proc. IWQoS'00.]

Networks

- Suitable service quality support mechanism available
 - Per-node mechanisms
 - Capacity reservation
 - Prioritisation
 - SQS instantiation control.
- Service quality instantiation may be controlled by terminal, network or server.
- End-to-end service quality handled with SLAs towards other operators, service providers & end users.
- Traffic engineering may be used to optimise network configuration.

Summary

- If network operator is separate from service provider, neither of them can alone provide service quality guarantee.
- Two possibilities:
 - End users subscribe to service provider
 - Service quality handled via SLAs towards network provider and/or per-session signalling.
 - End users subscribe to network provider for Internet access
 - Network provider subcontracts a selection of services from 3rd party service providers and arranges for service quality support with SLAs and/or per-session signalling.
- Roaming between operators.

More information

- QoS definitions: ITU-T recommendation G.1000, 3GPP deliverable 22.105.
- TIPHON QoS model: ETSI TR/TIPHON 101 329-3.
- SLAs:
 - TeleManagement Forum
 - IETF RFC 3260 (DiffServ).