End-to-end IP Service Quality and Mobility

- Lecture # 11-

Special Course in Networking Technology S-38.215

Vilho Räisänen

1.	Introduction	Jan 13th
2.	Characteristics of mobile applications	Jan 20th
3.	Service quality requirement characterizations	Jan 27 th
4.	Challenges of mobile environment	Feb 3rd
5.	Mobility and QoS in GPRS	Feb 10 th
6.	Mobility and QoS in 3GPP systems	Feb 17th
7.	Mobility and QoS with Mobile IP	Feb 24th
8.	Mobile IP QoS enhancements	Mar 3 rd
9.	Edge mobility and SIP	Mar 10 th
10.	Inter-system mobility	Mar 17 th
11.	End-to-end service quality provisioning	Mar 31st
12.	Summary	Apr 7 th

Vilho Räisänen

Example 1: simple MIP-based AN

- Service quality allocated according to user class.
 - E2e SQ defined loosely for application classes.
- Service quality support instantiated in the access network.
 - Traffic conditioning for user traffic or flows.
 - May take into account application class.
 - Particular parameters for access network QoS: DSCP, ...
 - Particular traffic aggregate of transport operator used.
- SQ level changes due to mobility (intra- or inter-system) or network load.
 - No change in conditioning or SQ parameters.
 - No change in traffic aggregates towards transport network.

Vilho Räisänen

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

	SLA example
/ 8 1 (Applicability: 1 st of January 2003 – 31 st of December 2003. Specifying: service quality between peering points "Walburg" and "Otaniemi". Revisioning: terms of the agreement will be reviewed during the last week of Q1/03 and can be revised by mutual agreement of the parties.
(Conditioning agreement for ingress traffic:
2 (1)	 Service quality level (measured over 60-second periods in accordance with RFC 3432): – EF PDB: • Delay: 90% percentile: <10 ms, 95% percentile <12 ms.
	• Packet loss: percentage < 0.1%.
	- AF PDB:
	• Delay: 90% percentile: <20 ms, 95% percentile <25 ms.
•	• Packet loss: percentage < 1%.
]	Reporting : weekly, monthy, quarterly
•	••
	Vilho Räisänen

Bandwidth brokers Thus far, static inter-domain SLAs have been assumed. May still include multiple traffic aggregates. Alternative: dynamic allocation of end-to-end SQ across domains. Two basic schemes: Service domain(s) negotiate end-to-end SQ level and allocate it to transport domains. Bandwidth brokers (BBs) in different network domains negotiate end-to-end SQ allocation. Tasks of a bandwidth broker [RFC2638]: Keep track of resource allocations Configure edge treatment Manage resource allocations to other domains

Vilho Räisänen

QBone Bandwidth Broker	
• QBone is developing an architecture for dynamic SLA DiffServ-based multi-operator environment.	s in a
• Protocols:	
 User/application protocol. 	
 Intra-domain protocol. 	
 Inter-domain protocol. 	
• Data available to BB:	
– Routing tables.	
 Aggregate level PDB-like measurements 	
• Tools used by BB:	
 Aggregation of flows into core tunnels. 	
- Negotiation of SQ with end user and other domains	5.
[qbone.internet2.edu/bb/bboutline2.html] Vilho Räisänen	[Räisänen, ch. 8]

SQS and QBone

- SQS is instantiated using the following parameters:
 - Start and end times (for in-advance reservations).
 - Source and destination.
 - MTU size.
 - Peak rate.
- Service models:
 - QBone Premium Service (QPS)
 - Low-delay, low-jitter, low-loss service.
 - Alternative Best Effort (ABE)
 - Support multiplexing of adaptive real-time applications with data transmission.

[Räisänen, ch. 8]

[qbone.internet2.edu/bb/bboutline2.html] Vilho Räisänen

Summary End-to-end provisioning alternatives: • - Static • Per-session SQS • Aggregate SQS - Dynamic • Service level negotiation. • Transport level negotiation: bandwidth brokers. Service Level Agreements. **Traffic Engineering:** • - Measurements. - Configuration. - Modelling. Vilho Räisänen