## End-to-end IP Service Quality and Mobility

- Lecture #12 -

Special Course in Networking Technology S-38.215

Vilho Räisänen



1



| Exercise A, cont'd                                                                                                                                                                                                                                             |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <ul> <li>Assume: QoS request between MS and agent or<br/>between two agents: A ms.</li> <li>Query QoS levels from transport: B ms.</li> <li>Inform available QoS levels: C ms.</li> <li>Commit transport QoS: D ms.</li> <li>Acknowledge QoS: E ms.</li> </ul> | 2A+<br>2B+<br>2C+<br>2D+<br>2E               |
| <ul> <li>Imaginary example:</li> <li>A=10 ms.</li> <li>B=30 ms.</li> <li>C=10 ms.</li> </ul>                                                                                                                                                                   | =<br>2x(A+B+C+D+E).                          |
| - D=200 ms. Set up classifiers<br>- E=10 ms. & conditioners. Cap<br>$\Rightarrow 520$ ms. Vilho Räisänen                                                                                                                                                       | pability negotiation<br>e needs to be added. |



| Exercise B, cont'd.                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------|
| • Maximum delay variation between two adjacent packets = 380 ms in the previous example.                                |
| <ul> <li>Experienced by lower priority class.</li> </ul>                                                                |
| <ul> <li>Even high priority class may experience delay variation up<br/>to 335 ms.</li> </ul>                           |
| <ul> <li>VoIP multiplexing: codec with Voice Activity Detection (VAD)<br/>produces ON/OFF patterned streams.</li> </ul> |
| <ul> <li>Assume maximum bit rate = CBR for payload; VAD active 60% of the time.</li> </ul>                              |
| – Earlier lecture:                                                                                                      |
| • $r = 0.375 \text{ x CBR}.$                                                                                            |
| • $b = CBR \times 1$ sec.                                                                                               |
| Vilho Räisänen                                                                                                          |





























## Exercise E, cont'd

- Maximum VoIP traffic from single cell = 678.8 kbit/s without VAD.
  - Conservative provisioning for this speech pattern (full duplex).
- Assume 2Mbit/s link => 1321.2 kbit/s for AF and BE traffic.
  - If browsing usage follows the same pattern than VoIP, get >60 kbit/s average throughput per user.
    - Probably OK for browsing => multiplexing of bursty request/reply traffic.
    - Probably not enough for large downloads.
    - Possible strategy for browsing: token rate = 60 kbit/s for streaming, relatively large bucket size.

Vilho Räisänen





