End-to-end IP Service Quality and Mobility - Lecture #3 -

Special Course in Networking Technology S-38.215

Vilho Räisänen

Planned contents & draft schedule

1. Introduction	Introduction		
2. Characteristics of mobile	Characteristics of mobile applications		
3. Service quality requirer	Service quality requirement characterizations		
4. Challenges of mobile env	Challenges of mobile environment		
5. Mobility and QoS in GPF	Mobility and QoS in GPRS		
6. Mobility and QoS in 3GF	Mobility and QoS in 3GPP systems		
7. Mobility and QoS with M	Mobility and QoS with Mobile IP		
8. Mobile IP QoS enhancem	Mobile IP QoS enhancements		
9. Edge mobility	Edge mobility		
10. Inter-system mobility). Inter-system mobility		
11. End-to-end QoS manager	11. End-to-end QoS management		
12. Summary	Summary		
Dates in parentheses to be confirmed			
	Vilho Räisänen		

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

On temporal correlations			
• Latency:			
 E2e latency can be measured for a service event or part thereof -> d_i. 			
- Measurement for a set of service events -> time series $\{d_i\}$.			
- Delay jitter = temporal correlation of $\{d_i\}$.			
• Packet loss:			
- Service event is lost / not lost -> $\{l_i\}$.			
- Measurement for a set of service events $\rightarrow \{l_i\}$.			
- Loss correlation = temporal correlation of $\{l_i\}$.			
• Throughput consistency:			
- Temporal correlation of $\{b_i\}$.			
[K.Lai, M. Baker, Measuring bandwidth, in Proc. Infocom'99, p. 235 ff.]			
Vilho Räisänen			

Availability is measured on aggregate service level as per cents of total time. Depending on service, availability may be defined in different ways: All service events belonging to the service instance must be present. Some service events may be optional. Example: ACME kryptonite detectors Seeing marketing video considered essential for service event, ditto for other service events. Availability = 100% - (V||P||C) V = video unavailability P = payment unavailability C = confirmation unavailability

Vilho Räisänen

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Interactive applications

- Desirable end user experience:
 - Availability relatively high (designed).
 - Replies to requests take place interactively.
 - Duration for downloading predictable.
- Conclusions:
 - Availability needs special attention.
 - Designed delay for small messages in UL direction.
 - Downlink:
 - Designed delay, relatively consistent.
 - Throughput relatively consistent.
 - Packet loss designed, relatively consistent.

Desirable end user exp	erience:
– Availability high.	
– Service instantiatio	n relatively fast.
- Some service event	ts must have relatively low latency.
Conclusions:	
– Availability needs	special attention.
 Designed delay and 	l loss performance for small messages.
– For large content (e	e.g. pictures), as with downloading.
C	

Streaming

- Desirable end user experience:
 - Availability high.
 - Service instantiation interactive.
 - Media quality high (more important for audio than for video).
- Conclusions:
 - Availability needs special attention.
 - Designed delay and loss performance for RTSP.
 - Latency for media streams relatively small.
 - Constant token rate desirable
 - Packet loss allowed if retransmissions possible.
 - BER may be allowable for media streams.

Multimedia conferencing
• Desirable end user experience:
 Availability high.
 Service instantiation quick.
 Media quality high (more important for audio than for video).
Conclusions:
 Availability needs special attention.
 High delay and loss performance for SIP signalling.
 Latency for media streams small.
 Minimum token rate required for audio component, desirable for video component.
 BER allowable for media streams.
Vilho Räisänen

Summary

- Service quality requirements: service type inherent vs. end user experience related.
- Most important service quality characteristics:
 - Availability.
 - Service instantiation time.
 - Throughput consistency.
 - E2e latency.
 - E2e event loss.
 - (BER).

• Temporal correlations.

• Modelling of end user experience.