End-to-end IP Service Quality and Mobility

- Lecture #4 -

Special Course in Networking Technology S-38.215

1.	Introduction	Jan 13th
2.	Characteristics of mobile applications	Jan 20th
3.	Service quality requirement characterizations	Jan 27 th
4.	Challenges of mobile environment	Feb 3rd
5.	Mobility and QoS in GPRS	Feb 10 th
6.	Mobility and QoS in 3GPP systems	(Feb 17 th)
7.	Mobility and QoS with Mobile IP	(Feb 24 th)
8.	Mobile IP QoS enhancements	(Mar 3 rd)
9.	Edge mobility	(Mar 10 th)
10.	Inter-system mobility	(Mar 17 th)
11.	End-to-end QoS management	(Mar 31 st)
12.	Summary	(Apr 7 th)

Agenda

- Goal of the lecture
- Definition of mobility-related concepts
- Scenarios for mobility
- Service quality challenges in IP mobility systems
- Mobility modelling
- Conclusions for service quality support

Scenarios, cont'd

- Scenario #3: Britney is sitting in a car downtown Helsinki with a laptop sporting WCDMA/802.11 PCMCIA card, watching streamed video.
 - WLAN used in hotspots, WCDMA outside them.
 - End user service quality provisioned by the operators.
 - Available bandwidth can be larger in WLAN hotspots (up to 11 Mbit/s).
 - Service quality needs to be consistent between access technologies.
 - Handover between access technologies should be as seamless as possible.
 - Authentication.

Vilho Räisänen

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Ad hoc networks

- Ad hoc networks do not have predefined infrastructure.
 - Mobile nodes fixed but topology not constrained.
 - E.g., "wireless routers" on 2.4GHz band.
 - Network nodes may be moving.
 - E.g., 802.11 clients in infrastructure-less mode.
- Challenges:
 - Topology variable.
 - Large share of overall traffic may need to be routed over small number of nodes.
 - Routing updates.
 - Service quality support mechanisms need to be adaptive.
 - QoS model.

Service quality control for mobility

- Topological diversity.
 - Use multiple PoAs simultaneously.
 - "Make before break".
- End-to-end service quality downgrading / renegotiation.
 - Guaranteed performance vs. shared capacity.
 - Can also be implicit different kinds of end user SLAs for different technologies.
- Interrupted communication.
 - Shift service instance / event in time.
- Connection blocking/dropping.
 - Continuity/availability may be standardized or defined in end user SLAs.

System-level modelling for service quality

- Methodology depends on the goal of modelling:
 - Given anticipated traffic volumes, decide the best possible network topology and element capacity.
 - Given the network topology and element capacities, find out how much traffic one can accommodate into the network.
 - Given the network topology and anticipated traffic volumes, find out optimal element capacities.
- Appropriate level of detail:
 - Average modelling applies better higher up in the topology (CLT).
 - Statistics of variations more important in first access links.
- Edge treatment.

Vilho Räisänen

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

	Example, cont'd
•	Endpoint level modelling, packet event simulator assumed.
•	Let's make it as simple as possible.
	- AP link layer capacities = $\{o_i\}$, $i = 16$.
	- Network link capacities = $\{l_i\}$, $i = 110$.
	- Single service, single event / service instance.
	- Inter- service instance separation: $P(s) \sim exp(-\alpha t)$.
	– 95% percentile for end-to-end delay: D.
	 Edge treatment: dropping => token bucket parameters.
	– Adjacency: given.
	- Velocity distribution spatially uniform, single velocity v for all nodes.
	Vilho Räisänen

Example 2

- Endpoint level modelling w/packet simulator.
- DiffServ transport network.
- As before, but with N service types.
 - Each service instance types consist of M_i service events with inter-event temporal separations $P(s) \sim exp(-\beta_i t)$, i=1,N.
 - Inter- service instance separations: $P(s) \sim exp(-\alpha, t), i=1, N$.
 - 95% percentile for end-to-end delay: D_i , i=1,2.
 - Edge treatment: dropping => N x token bucket parameters.
 - DiffServ parameters (WRED not assumed):
 - Rate limiter setting for EF.
 - Scheduling weight for AF.

