End-to-end IP Service Quality and Mobility - Lecture #7-

Special Course in Networking Technology S-38.215

1. In	troduction	Jan 13th
2. C	haracteristics of mobile applications	Jan 20th
3. Se	ervice quality requirement characterizations	Jan 27 th
4. C	hallenges of mobile environment	Feb 3rd
5. M	lobility and QoS in GPRS	Feb 10th
6. M	lobility and QoS in 3GPP systems	Feb 17 th
7. M	lobility and QoS with Mobile IP	Feb 24th
8. M	obile IP QoS enhancements	Mar 3 rd
9. E	dge mobility	(Mar 10 th)
10. In	ter-system mobility	(Mar 17 th)
11. E	nd-to-end QoS management	(Mar 31st)
12. Si	ummary	(Apr 7 th)

IP mobility problem

- Goal: support mobility, not only nomadicity.
- More precisely, support *session* mobility.
 - Case TCP: socket connection opened between (IP address, port) pairs.
 - Reachability address.
 - On the other hand, the IP address of the terminal should reflect PoA.
- Mobile IP is a scheme for managing dynamically the binding between reachability address and PoA.
 - Home address (HA): reachability address from the home link.
 - Care-of-address (CoA): PoA from the "visited" link.
 - Binding: association between HA and CoA.

	Mobile IP design principles
• N	etwork layer solution to mobility in the Internet.
_	Mobile Node (MN) and mobility servers handle mobility.
	• Intermediate servers do not need to be mobility servers.
	- Normal IP routing sufficient.
	• Corresponding hosts (Correspondent Nodes, CN) run normal IPv4 or IPv6 stacks.
	 No changes to applications required.
	Host-specific routes not required in intermediate nodes.
_	Independent of link layer technology.
_	Can be used together with link layer mobility schemes.
• De	esigned for solving IP mobility, not all associated problems.
• Se	curity with respect to endpoint location.
[Perkins	: MIP] Vilho Räisänen

	MIPv4
,	Home address resides on home link.
•	If mobile node is away from home link, it registers its CoA in Home Agent (HA).
	- MN learns CoA from Foreign Agent (FA) advertisement.
	- CoA is sent to HA (registration).
	• FA-CoA: by FA.
	• Co-located CoA (CCoA): by MN or FA.
	 HA updates binding between home address and CoA.
	 HA tunnels packets to CoA.
	• Tunnelling: IP-in-IP / minimal encapsulation / GRE.
	• HA must proxy ARP requests on home link.
•	MN uses it home address as source address.
	Vilho Räisänen

Brief recap of IPv6

- IPv6 has 128-bit address space.
- Unicast IP address: 64 bit prefix + 64 bit interface ID.
- Basic header simple, extension headers:
 - Hop-by-Hop Options
 - Routing (Type 0)
 - Fragment
 - Destination Options
 - Authentication
 - Encapsulating Security Payload
- Routing header: list one or more intermediate nodes to be "visited" on the way to a packet's destination.

[RFC2373, RFC2460]

Μ	IPv6 design principles
• No FAs \Rightarrow only	ly CCoAs to be used.
• Route optimisa	tion built into MIPv6.
• No need for re-	verse tunnelling.
 IPv6 heade 	r options can be used.
• Packets need n	ot be encapsulated because of mobility.
 IPv6 heade 	r options can be used.
• No separate co	ntrol packet needed.
 Piggyback options. 	mobility information into payload as IPv6 header
• Multi-homing	possible.
 Multiple IP 	addresses simultaneously in use.
Wisely: MIP]	Vilho Räisänen

MIPv6 details

- No FA, MNs create their CoAs using link-local address and address autoconfiguration.
 - Stateless: get subnet prefix from neighbour discovery messages.
 - Stateful: DHCPv6.
- All IPv6 hosts support binding cache.
 - Binding updates carried as destination options.
- IPv6 has options after the basic header, including routing header.
- CNs put CoA in routing headers.
- HA can tunnel those packets which it receives.

MN moves under a new AR.
MN forms link local address using link-local prefix and its unique interface ID.
MN gets AR prefix from router advertisement.
- MN can use router solicitation to get router advertisement.
MN sends binding update to CNs and HA.
CNs update their binding cache.
CNs put CoA in routing header of packets destined for MN.
HA tunnels packets destined to MN from CNs the binding of which is not up-to-date.

Summary

- MIP supports session mobility on network layer.
 - Service quality support is not an integral part of MIP.
- MIPv4: interoperates with standard IPv4 routers and CNs.
 - Requires FA.
 - No route optimisation in base MIPv4.
 - NATs and firewalls, address shortage.
- MIPv6: solves many of MIPv4's shortcomings.
- Service quality support still not part of basic MIP.
 - Handover performance.
 - Handover scalability.