HELSINKI UNIVERSITY OF TECHNOLOGY
Networking Laboratory
S-38.215 Special Course in Networking Technology, Spring 2004

Exercise 1

9.2.2004

Aalto

1. (Lawler, Exercise 1.2) Consider a Markov chain with state space $\{0,1\}$ and transition matrix

$$
P=\left[\begin{array}{ll}
1 / 3 & 2 / 3 \\
3 / 4 & 1 / 4
\end{array}\right]
$$

Assuming that the chain starts in state 0 at time $n=0$, what is the probability that it is in state 1 at time $n=3$?
2. (Lawler, Exercise 1.5) Consider the Markov chain with state space $S=\{0, \ldots, 5\}$ and transition matrix

$$
P=\left[\begin{array}{cccccc}
.5 & .5 & 0 & 0 & 0 & 0 \\
.3 & .7 & 0 & 0 & 0 & 0 \\
0 & 0 & .1 & 0 & .9 & 0 \\
.25 & .25 & 0 & 0 & .25 & .25 \\
0 & 0 & .7 & 0 & .3 & 0 \\
0 & .2 & 0 & .2 & .2 & .4
\end{array}\right]
$$

What are the communication classes? Which ones are recurrent and which are transient? Suppose the system starts in state 0 . What is the probability that it will be in state 0 at some large time? Answer the same question assuming that the system starts in state 5.
3. Consider the following random walk with reflecting boundaries:

$$
\begin{aligned}
& p(0,1)=1 \\
& p(i, i-1)=p(i, i+1)=1 / 2, \quad \text { for all } i=1, \ldots, N-1, \\
& p(N, N-1)=1
\end{aligned}
$$

What is the period of this irreducible Markov chain? Find the invariant distribution. Find the following limits for all $i=0, \ldots, N$:

$$
\lim _{n \rightarrow \infty} p_{2 n}(0, i) \quad \text { and } \quad \lim _{n \rightarrow \infty} p_{2 n+1}(0, i)
$$

