Exercise 2

Networking Laboratory
16.2.2004

S-38.215 Special Course in Networking Technology, Spring 2004

1. (Lawler, Exercise 1.9) Consider the Markov chain with state space $\{1,2,3,4,5\}$ and transition matrix

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 & 3 / 4 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Is the chain irreducible?
(b) What is the period of the chain?
(c) What are $p_{1000}(2,1), p_{1000}(2,2), p_{1000}(2,4)$ (approximately)?
(d) Let T be the first return time to state 1 , starting at state 1 . What is the distribution of T and what is $E[T]$? What does this say, without any further calculation, about $\pi(1)$?
(e) Find the invariant distribution $\bar{\pi}$. Use this to find the expected return time to state 2 , starting in state 2.
2. Consider the Markov chain with state space $\{0,1,2\}$ and transition matrix

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1-p & 0 & p \\
0 & 1 & 0
\end{array}\right]
$$

where $0<p<1$. Let T_{i} denote the time of the first visit after time 0 to state i, i.e.

$$
T_{i}=\min \left\{n \geq 1 \mid X_{n}=i\right\}
$$

Find the conditional means $E\left[T_{j} \mid X_{0}=i\right]$ for all $i, j \in\{0,1,2\}$.
3. (Lawler, Exercise 2.2) Consider the following Markov chain with state space $S=$ $\{0,1, \ldots\}$. A sequence of positive numbers p_{1}, p_{2}, \ldots is given with $\sum_{i=1}^{\infty} p_{i}=1$. Whenever the chain reaches state 0 , it chooses a new state according to the p_{i}. Whenever the chain is at a state other than 0 , it proceeds deterministically, one step at a time, toward 0 . In other words, the chain has transition probability

$$
\begin{gathered}
p(x, x-1)=1, \quad x>0 \\
p(0, x)=p_{x}, \quad x>0 .
\end{gathered}
$$

This is a recurrent chain since the chain keeps returning to 0 . Under what conditions on the p_{x} is the chain positive recurrent? In this case, what is the limiting probability distribution π ? (Hint: it may be easier to compute $E[T]$ directly where T is the time of first return to 0 starting at 0 .)

