Exercise 3

Networking Laboratory
23.2.2004

S-38.215 Special Course in Networking Technology, Spring 2004

1. (Lawler, Exercise 2.3) Consider the Markov chain with state space $S=\{0,1,2, \ldots\}$ and transition probabilities

$$
p(x, x+1)=2 / 3, \quad p(x, 0)=1 / 3
$$

Show that the chain is positive recurrent and give the limiting probability distribution $\bar{\pi}$.
2. (Lawler, Exercise 2.5) Let X_{n} be a Markov chain with state space $S=\{0,1,2, \ldots\}$. For each of the following transition probabilities, state if the chain is positive recurrent, null recurrent, or transient. If it is positive recurrent, give the stationary probability distribution:
(a) $p(x, 0)=1 /(x+2), \quad p(x, x+1)=(x+1) /(x+2)$;
(b) $p(x, 0)=(x+1) /(x+2), \quad p(x, x+1)=1 /(x+2)$;
(c) $p(x, 0)=1 /\left(x^{2}+2\right), \quad p(x, x+1)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$.
3. Let A be the infinitesimal generator for an irreducible, finite-state, continuous-time Markov chain. Let $\bar{\pi}$ denote the invariant distribution of this chain, i.e.

$$
\bar{\pi} A=0 .
$$

Construct such a transition matrix P for which $\bar{\pi}$ (given above) is the invariant distribution, i.e.

$$
\bar{\pi} P=\bar{\pi} .
$$

(Hint: See the exercises in Lawler, Section 3.5.)

