1. Let X be a random variable. Fix $n>0$ and prove that

$$
P(A) \leq P\{|X|>n\} \quad \Rightarrow \quad E\left[|X| I_{A}\right] \leq E\left[|X| I_{\{|X|>n\}}\right],
$$

where I_{A} refers to the indicator of event A.
2. (Lawler, Exercise 5.6 (a)) Consider a biased random walk on the integers with probability $p<1 / 2$ of moving to the right and probability $1-p$ of moving to the left. Let S_{n} be the value at time n and assume that $S_{0}=a$, where $0<a<N$. Show that $M_{n}=((1-p) / p)^{S_{n}}$ is a martingale.
3. (Lawler, Exercise 5.6 (b)) Let S_{n} and M_{n} be as in Problem 2. Let T be the first time that the random walk reaches 0 or N, i.e.,

$$
T=\min \left\{n \mid S_{n} \in\{0, N\}\right\}
$$

(a) Verify the conditions of the optional sampling theorem for martingale M_{n} and stopping time T.
(b) Use optional sampling on the martingale M_{n} to compute $P\left\{S_{T}=0\right\}$.

