

0.1 Introduction

0.2 Linear Differential Equations
0.3 Linear Difference Equations
ch0.ppt
S-38.215 - Applied Stochastic Processes - Spring 2004
1

Chapter 0: Preliminaries

0.1 Introduction

- Stochastic processes
- Definition:
- a collection of random variables X_{t} indexed by time t
- Index
- Discrete time: $\{0,1,2, \ldots\}$
- Continuous time: subset of $[0, \infty)$
- State space
- Discrete: a finite or countably infinite set
- Continuous: real numbers R or d-dimensional space R^{d}
- Differential equations (deterministic processes)

$$
y^{\prime}(t)=F(t, y(t))
$$

- Markov processes (stochastic processes)
- The change at time t is determined by the value of the process at time t and not by the values at times before t

0.2 Linear Differential Equations

- Homogeneous differential equation of order n :

$$
\begin{equation*}
y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\cdots+a_{1} y^{\prime}(t)+a_{0} y(t)=0 \tag{0.1}
\end{equation*}
$$

- General solution:

$$
y(t)=c_{1} y_{1}(t)+\cdots+c_{n} y_{n}(t)
$$

- Constants c_{1}, \ldots, c_{n} determined from the initial conditions:

$$
y(0)=b_{0}, y^{\prime}(0)=b_{1}, \ldots, y^{(n-1)}(0)=b_{n-1}
$$

- Functions $y_{1}(t), \ldots, y_{n}(t)$ determined as follows:

1. Try : $y(t)=e^{\lambda t} \Rightarrow y^{(n)}(t)=\lambda^{n} e^{\lambda t}=\lambda^{n} y(t)$
2. Solve (0.1): $\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}=0$
3. Solutions for a root of multiplicity $j: e^{\lambda t}, t e^{\lambda t}, \ldots, t^{j-1} e^{\lambda t}$

Chapter 0: Preliminaries

0.2 Linear Differential Equations

- First-order linear system of differential equations:

$$
\bar{y}^{\prime}(t)=A \bar{y}(t)
$$

- where A is a $n \times n$-matrix and $y(t)$ is a n-vector
- For any initial n-vector v, there is a unique solution:

$$
\bar{y}(t)=e^{t A_{\bar{v}}}
$$

- where

$$
e^{t A}=\sum_{j=0}^{\infty} \frac{(t A)^{j}}{j!}
$$

0.3 Linear Difference Equations

- Second-order homogeneous linear difference equation:

$$
\begin{equation*}
f(n)=a f(n-1)+b f(n+1), \quad K<n<N \tag{0.2}
\end{equation*}
$$

- General solution:

$$
f(n)=c_{1} f_{1}(n)+c_{2} f_{2}(n)
$$

- Constants c_{1} and c_{2} determined from the initial conditions:

$$
f\left(n_{1}\right)=b_{1}, f\left(n_{2}\right)=b_{2}
$$

- Functions $f_{1}(n)$ and $f_{2}(n)$ determined as follows:

1. Try : $f(n)=\alpha^{n}$
2. Solve (0.2) : $\alpha^{n}=a \alpha^{n-1}+a \alpha^{n+1} \Rightarrow \alpha=a+b \alpha^{2}$
3. Solution for a root of multiplicity $1: \alpha^{n}$
4. Solutions for a root of multiplicity $2: \alpha^{n}, n \alpha^{n}$

Chapter 0: Preliminaries

0.3 Linear Difference Equations

- Special cases of equation (0.2):
- Recursive formula (when $f(K)$ and $f(K+1)$ are known):

$$
\begin{equation*}
f(n+1)=\frac{1}{b}[f(n)-a f(n-1)] \tag{0.3}
\end{equation*}
$$

- Example: $a+b=1$
- Case $a \neq b$ (0.5)
- Case $a=b$ (0.6)

0.3 Linear Difference Equations

- Homogeneous linear difference equation of order k :

$$
\begin{equation*}
f(n+k)=a_{0} f(n)+a_{1} f(n+1)+\cdots+a_{k-1} f(n+k-1) \tag{0.7}
\end{equation*}
$$

- General solution:

$$
f(n)=c_{1} f_{1}(n)+\cdots+c_{k} f_{k}(n)
$$

- Constants c_{1}, \ldots, c_{k} determined from the initial conditions:

$$
f\left(n_{1}\right)=b_{1}, f\left(n_{2}\right)=b_{2}, \ldots, f\left(n_{k}\right)=b_{k}
$$

- Functions $f_{1}(n), \ldots, f_{k}(n)$ determined as follows:

1. Try : $f(n)=\alpha^{n}$
2. Solve (0.7) : $\alpha^{k}=a_{0}+a_{1} \alpha+\cdots+a_{k-1} \alpha^{k-1}$
3. Solutions for a root of multiplicity $j: \alpha^{n}, n \alpha^{n}, \ldots, n^{j-1} \alpha^{n}$

